
ProVerif with Lemmas, Induction, Fast Subsumption, and
Much More

Anonymized for submission to Security and Privacy 2021

August 10, 2021

Abstract

This paper presents a major overhaul of one the most widely used symbolic secu-
rity protocol verifiers, ProVerif. We provide two main contributions. First, we extend
ProVerif with lemmas, axioms, proofs by induction, natural numbers, and temporal
queries. These features not only extend the scope of ProVerif, but can also be used
to improve its precision (that is, avoid false attacks) and make it terminate more often.
Second, we rework and optimize many of the algorithms used in ProVerif (genera-
tion of clauses, resolution, subsumption, . . .), resulting in impressive speed-ups on large
examples.

1 Introduction

Security protocols aim at securing communications. They are used in various applications:
establishment of secure channels over the Internet, secure messaging, electronic voting, mobile
communications, etc. Their design is known to be error prone and flaws are difficult to fix
once a protocol is largely deployed. Hence a common practice is to analyze the security of a
protocol using formal techniques and in particular automatic tools. For example, TLS 1.3 has
been designed while research groups were developing formal models in parallel and suggesting
modifications [BBK17].

Several tools have been proposed for automatized security analysis of protocols. Some tools
focus at restricted classes of protocols for which the analysis is deemed to terminate. They
typically focus on a bounded number of sessions like Avispa [ABB+05], DeepSec [CKR18],
or Akiss [CCK12]. These tools are efficient at finding attacks on small protocols but quickly
face state explosion for complex protocols. Hence for large and complex protocols, tools like
Tamarin [SMCB12] and ProVerif [Bla14] are often preferred. They both offer a flexible
framework to model a protocol and its primitives, as well as their security properties. One
key feature of Tamarin is that it offers an interactive mode when the tool fails to prove a
protocol, while ProVerif typically offers more automation.

ProVerif has been developed for 20 years and has been used to analyze hundreds
of protocols, including major deployed protocols such as TLS [BBK17], Signal [KBB17],
Noise [Per16, KNB19], the avionic protocol Arinc823 [Bla17], and the Neuchâtel voting proto-
col [CGT18]. ProVerif is taught in several universities (in specialized Masters) and summer
schools. The tool can analyze a large class of security properties, either specified as corre-
spondence properties (for example requesting that an event occurs before another one) or as

1

equivalence properties, which state that an attacker should not be able to distinguish between
two scenarios. Correspondence properties can be used to specify authentication, consistent
views between parties, or verifiability properties, while equivalence properties are often used to
specify privacy properties like anonymity, non traceability, or vote privacy. Given a protocol
and a security property, ProVerif may either prove that the property is satisfied or exhibit
an attack. It may also return “cannot be proved” meaning that it can not reach a conclusion.
Finally, it may be that ProVerif is not efficient enough to conclude in a reasonable amount
of time, or that ProVerif does not terminate at all.

Our contributions. We have carried out a major overhaul of ProVerif, improving its
precision, its efficiency, its expressiveness, and introducing some level of interactivity by al-
lowing users to declare intermediate properties helping ProVerif to complete proofs. In
more details, our contributions can be summarized as follows:

• support for axioms, lemmas, and restrictions as in Tamarin, in order to obtain the best
of the two tools: a high level of automation as well as the possibility to interact with
the tool. Lemmas specify intermediate properties meant to help the proof. Axioms are
similar to lemmas but do not need to be proved since they are typically guaranteed by
other means (e.g. proof by hand). Restrictions are a convenient modeling technique to
exclude behaviors that cannot occur in practice (e.g. concurrent access to a lock state).

• improved precision: ProVerif returns “cannot be proved” less often. We introduce a
precise option that automatically generates (sound) axioms that refine the abstractions
made by ProVerif when analyzing a protocol. This helps to conclude that a protocol
is either secure or has an attack.

• support for natural numbers together with addition (between integers and at most one
variable) and comparison. Natural numbers can be used to specify protocols with coun-
ters or can model time evolution.

• support for temporal queries. A query is a security property that ProVerif should prove.
Temporal queries are queries in which some events are proved to happen before others,
such as event(Counter(c1))@t1 ∧ event(Counter(c2))@t2 ⇒ t1 > t2 ∨ c1 ≤ c2 where we
specify that the counter can only increase; the fact event(Counter(c))@t means that the
counter has value c at time t.

• better treatment of injective queries, that is, queries where the occurence of some event
(for example, the delivery of some product) can be associated injectively to another
event (for example a payment). The injective property ensures here that there are at
least as many payments as the number of deliveries. Such queries previously often yield
a “cannot be proved”.

• major speed improvements. The new ProVerif typically runs 30-40 times faster than
ProVerif 2.00 on large protocols and up to exponentially faster on some examples.

As a result, ProVerif can now support more protocols, in particular protocols with global
states, for both reachability and equivalence. Global states include counters, cells, tables and
are typically difficult to handle for ProVerif due to its internal abstractions. A tool GSVerif
was introduced [CCT18] (in the context of reachability properties) to automatically generate

2

Protocol P

Lemmas L1, . . . , Lk

Security properties %1, . . . , %n

Parsed from input file
Translation into
Horn clauses C

optimized

Saturation of C using
L1, . . . , Lk into Csat

optimized

Translation into
Request clauses R1

q , . . . , R
n
q

Verification: saturation of Csat ∪ {Riq}
with temporal variables using L1, . . . , Lk

into Cis, for i = 1 . . . n
Verify Cis satisfies %i, for i = 1 . . . n

true false cannot be proved

Parts in blue indicate the novelties introduced in this paper.

Figure 1: Overview of the ProVerif procedure.

properties that are proved to hold but cannot be proved by ProVerif. The properties gen-
erated by GSVerif can now be stated as axioms, and used at an earlier stage of the procedure,
yielding more successful proofs. Moreover, our approach now also applies to equivalence prop-
erties. Hence ProVerif can automatically prove equivalence properties for protocols with
global states, such as vote privacy in voting protocols that require to maintain a table of all
received votes.

Moreover, our experiments show that ProVerif can now prove or disprove (that is, exhibit
an attack) in many more protocols of the literature. In terms of efficiency, the analysis of 42
protocols from the Noise Protocol Framework took more than 170h and now takes 20min, hence
is at least 516 times faster. The analysis of the Neuchâtel voting protocol is parameterized by
the number k of voting options. For k ≥ 3, the verification of ballot privacy took more than 24h
and now takes 3s for k = 3 and 4h36min for k = 6. Our changes have been integrated in the
official distribution of ProVerif (release 2.02pl1 available at https://proverif.inria.fr).

A new procedure. All these enhancements and improvements of ProVerif have been
obtained through a major rewrite of the internal procedure of the tool. Let us overview the
procedure of ProVerif, as summarized in Figure 1. ProVerif first translates protocols
into a set C of Horn clauses, a subclass of first order logic. Then, it saturates the clauses by
resolution, yielding a simpler set of clauses Csat that derive the same facts. If this saturation
procedure terminates, then ProVerif verifies the security property by saturating again Csat
with the request clause R obtained by translating the security property, and verifying that
the obtained clauses satisfy the property. The correctness of ProVerif ensures that, if
this verification succeeds, then the initial property holds. Otherwise, either ProVerif can

3

https://proverif.inria.fr

reconstruct an attack against the initial protocol following the corresponding clause derivation,
or ProVerif cannot conclude and returns “cannot be proved”.

It is not easy in this context to add lemmas since they cannot be easily interpreted by
ProVerif as an “help”. Instead, we modified the internal saturation procedure of ProVerif
to refine clauses. Intuitively, given an already proved lemma A⇒ B, a clause H → C can be
replaced by H ∧ B → C as soon as H entails A. This yields a more precise clause, possibly
helping termination. This is sound as soon as we only use lemmas that have been already
proved. However, we also allow a lemma Li to be proved by induction on the length of the
execution trace. We can prove that the first saturation procedure remains sound for such
induction thanks to the invariant that facts in hypotheses of clauses always happen before
facts in the conclusion, and strictly before for facts that occur in lemmas. However, in the
verification step, this property is lost. Therefore, we have entirely revisited the verification
procedure, to keep track that certain facts happen (strictly) before others, so that a lemma
proved by induction can be used to refine a clause only when the ordering is compatible (hence
guaranteeing soundness). More precisely, facts are now annotated with temporal variables
and clauses include ordering constraints on these variables. We provide a sound procedure to
resolve such clauses. Thanks to these temporal variables, it is then easy to support temporal
queries.

The introduction of natural numbers with addition and comparison follows (and general-
izes) the approach initiated in [CCT18]: our saturation procedure relies on the Pratt algorithm
[Pra77] to solve inequality constraints that appear in clauses.

We prove the correctness of the new procedure, for the entire syntax and semantics of
ProVerif. We cover optimizations and features that were never formally defined in previous
papers. For instance, we generalize the definition of correspondence queries, which were
previously defined only with events in their conclusion.

4

Contents

1 Introduction 1

2 Model 7
2.1 Syntax . 7
2.2 Semantics . 9
2.3 Security properties . 12

2.3.1 Correspondence and secrecy properties 13
2.3.2 Equivalence properties . 18
2.3.3 Correspondence queries on bitraces . 19

2.4 Axioms, restriction and lemmas . 20

3 Instrumented processes 21
3.1 Transforming temporal queries in atemporal queries 24
3.2 Restricting the trace search space . 26

3.2.1 Data constructor function symbols . 27
3.2.2 Internal communications . 30
3.2.3 Soundness of our restrictions . 31
3.2.4 Restrictions on bitraces . 32

3.3 Proving correspondence queries by induction . 33

4 Horn clauses generation 35
4.1 Extending the rewrite rules . 35
4.2 Clauses generated for correspondence queries 36

4.2.1 Clauses for the attacker . 36
4.2.2 Clauses for the protocol . 37
4.2.3 Soundness . 37

4.3 Clauses generated for equivalence queries and correspondence queries on bitraces 40
4.3.1 Clauses for the attacker . 40
4.3.2 Clauses for the protocol . 41
4.3.3 Soundness . 42

4.4 Precise actions . 43

5 Saturation procedure 45
5.1 Resolution rule and selection function . 45
5.2 Classic simplification rules . 46
5.3 General redundancy . 47
5.4 Natural numbers . 48
5.5 Applying ProVerif lemmas . 50
5.6 The saturation procedures . 52
5.7 Soundness of the saturation procedures . 53

6 The solving procedure 54
6.1 The conjunction predicate . 54
6.2 Ordered clauses and derivations . 55
6.3 Ordered transformation rules . 57
6.4 The procedure and its soundness . 61

5

7 The verification procedure 62
7.1 Equivalence queries . 62
7.2 Simple correspondence queries . 63
7.3 Nested queries . 66
7.4 Injective queries . 69
7.5 Correspondence lemmas on bitraces . 74

Index 77

A Proof of Lemma 8 81
A.1 (`i, trace(CI ,−→i)) is mapped by (`is, trace(CI ,−→i)) 87
A.2 (`is, trace(CI ,−→i)) is nIO-mapped by (`is, tracenIOIO (CI ,−→i)) 89
A.3 (`is, tracenIOIO (CI ,−→i)) is nIO-mapped by (`nIOIO ,`i, tracenIOIO (CI ,−→i)) 93

B Proof of Theorem 1 94
B.1 Handling data constructor function symbols . 95
B.2 Proving the invariant . 97
B.3 Main proof . 106

C Proof of Theorem 2 108
C.1 Preamble . 110
C.2 Soundness of simplify

Sp
L,Li({R}) . 115

C.3 Soundness of condenseSp(C) . 122
C.4 Main proof . 128

D Proof of Theorem 4 130
D.1 Soundness of simplifyS

Sp
L,Li(C) . 131

D.2 Soundness of condenseSSp(C) . 136
D.3 Main proof . 139

E Proof of Theorem 6 141
E.1 Preliminary lemmas . 141
E.2 Main proof . 147

6

2 Model

In this section, we will present the process calculus and the security properties we are focus-
ing on. Note that since this aims to improve the internal algorithm of ProVerif, we will
reuse many of the notations and definitions of the papers describing the current algorithm of
ProVerif [BAF08, Bla09, Bla16].

2.1 Syntax

We assume a set of variables V, a set of names N . We consider a finite signature Σ of
function symbols with their arity partitioned in four sets Fd, Fc, Fe and Ftbl representing
respectively the constructor, destructor function symbols, events and tables. The syntax for
terms, expressions, events, predicates and processes is displayed in Figure 2.

M, N ::= terms
x variable (x ∈ V)
n name (n ∈ N)
f(M1, . . . ,Mk) applied f ∈ Fc

ev ::= events
e(M1, . . . ,Mk) (e ∈ Fe)

D ::= expressions
M term
h(D1, . . . , Dk) applied h ∈ Fd ∪ Fc
fail failure

P,Q ::= processes
0 nil
out(N,M);P output
in(N, x);P input
P | Q parallel composition
!P replication
new a;P restriction
phase κ;P phase
insert tbl(M1, . . . ,Mn);P table insertion
get tbl(x1, . . . , xn) suchthat D in P else Q table lookup
let x = D in P else Q assignment
event(ev);P event

Figure 2: Syntax of the core language of ProVerif.

Terms represents data and can be built as a variable, a name or the application of construc-
tor function symbol on terms. As usual, we define substitutions as functions from variables to
terms, and the application of a substitution σ to an expression D is denoted Dσ. The most
general unifier of two terms M and N is denoted mgu(M,N).

Destructor function symbols can manipulate terms and only appear in expressions. Their

7

algebraic properties are expressed by means of rewrite rules. More specifically, the behavior
of a destructor function symbol g is modeled by an ordered list of rewrite rules of the form
g(U1, . . . , Un) → U where U1, . . . , Un, U are may-fail terms, that are either terms M or the
constant fail or a may-fail variable u. Note that we may-fail variables are never used in the
protocols, only in defining rewrite rules. Typically, a may-fail variable can only be instantiated
by fail or a term M .

In Σ, we also associate to each destructor function symbol a list of rewrite rules def(g) =
[g(Ui,1, . . . , Ui,n)→ Ui]

k
i=1. The evaluation of an expression is as follows: g(V1, . . . , Vn) evalu-

ates to V , denoted g(V1, . . . , Vn) ⇓ V , when:

• either there exists a substitution σ and 1 ≤ i ≤ k such that Uiσ = V , for all j ∈
{1, . . . , n}, Vj = Ui,jσ and for all i′ < i, for all σ′, (Ui′,1, . . . , Ui′,n)σ′ 6= (V1, . . . , Vn).

• or else V = fail.

The evaluation of a ground expression follows: fail ⇓ fail, M ⇓ M for all terms M and
h(D1, . . . , Dn) ⇓ U when D1 ⇓ U1, . . . , D1 ⇓ Un and

• if h ∈ Fd then h(U1, . . . , Un) ⇓ U ;

• if h ∈ Fc and U1, . . . , Un are terms then U = h(M1, . . . ,Mn);

• otherwise U = fail.

We natively consider some boolean constants, namely true and false, as well as the destructors
and , or and not with their expected semantics. We also consider a subset of Fc, called data
constructor function symbols and denoted Fdata, that are functions symbols that the attacker
can always deconstruct. For examples, tuples of any arity are in Fdata. For all f/n ∈ Fdata,
we assume the existence of a destructor πfi , for i = 1 . . . n, that is the i-th projection of f .
Formally, def(πfi) = [πfi (f(x1, . . . , xn))→ xi].

Example 1. The standard asymmetric encryption primitives can be modeled by consider-
ing a constructor aenc of arity 3, a constructor pk of arity 1, and a destructor adec of
arity 2 with the following rewrite rule: def(adec) = [adec(aenc(x, y, pk(z)), z) → x]. The
evaluation of the ground term adec(aenc(a, r, pk(k)), k) applies the rewrite rule, yielding
adec(aenc(a, r, pk(k)), k) ⇓ a.

Similarly, signatures can be modeled with the rule def(checksign) = [checksign(sign(x, y), vk(y))→
x]. This rule combines the verification of the signature and the retrieval of the message whose
signature has been checked. I

Example 2. Defining the behaviour of a destructor with a sequence of rewrite rules rather
than a set of rewrite rules, as it is usually the case in the litterature, intuitively allows to
express conditional tests on the application of rewrite rules. One can see the evaluation of
a destructor as "Apply the first rewrite rule if applicable, else apply the second rewrite rule
if applicable, else . . . ". This is strictly more powerful than standard set of rewrite rules.
Consider the destructor ifelse of arity 3 such that ifelse(x, y, z) should be rewritten in y when
x is true, and should be rewritten in z otherwise. This can be expressed in our formalism
with the sequence of rewrite rules def(ifelse) = [ifelse(true, y, z) → y; ifelse(x, y, z) → z].
Using a set of rewrite rule, the term ifelse(true, a, b) could be both rewritten in a and b (hence
yielding a non-convergent rewrite system). Using sequence of rewrite rules, we have only have
ifelse(true, a, b) ⇓ a. I

8

Example 3. May-fail variables allow to reason on the success or evaluation of an expression.
Consider the sequences def(dec) and def(ifelse) defined in Examples 1 and 2 respectively.
The destructor ifelse was defined as ifelse(x, y, z) should be rewritten in y when x is true,
and should rewritten in z otherwise. Hence, the intuition would be that the value of z should
not matter in the evaluation of ifelse(true, y, z). This is however not the case when z cannot
be evaluated, i.e. when its evaluation fails as shown below:

ifelse(true, a, b) ⇓ a but ifelse(true, a, dec(b, c)) ⇓ fail

These evaluation failures can be captured by using may-fail variables in the rewrite rules: by
defining def(ifelse) = [ifelse(true, u, v) → u; ifelse(x, u, v) → v] where x is a variable and
u, v are may-fail variables, we obtain ifelse(true, a, dec(b, c)) ⇓ a. I

Event function symbols e ∈ Fe can be applied on terms to build events e(M1, . . . ,Mn).
They are used to express correspondence security properties and can be executed by processes
with the construct event(e(M1, . . . ,Mn));P . The other constructs in processes are standard.
The process in(N, x);P models the input on the channel N of a term that is bound to x
when executing P . The process out(N,M);P represents the output of the term M on the
channel N . The process P | Q models the concurrent execution of P and Q. The replication
!P represents an unbounded number of copies of P . The restriction new a;P generates a
fresh name a that can be used in P . Finally, the construct let x = D in P else Q evaluates
the expression D, executing P with x bound to M when D evaluates to a message M , and
otherwise executing Q.

Natural numbers Following the work of [CCT18], we also consider natural numbers using
the Peano representation. We assume that zero/0 and succ/1 are two function symbols in Fc.
Note that for simplicity, we will denote by x + n the term succn(x), and we will denote by
n ∈ N the term succn(zero). We say that a ground term M is a natural number if M = n
for some n ∈ N. The symbol succ is a data constructor function symbol, meaning that we
consider a destructor minus/1 defined as def(minus) = [minus(succ(x))→ x].

Moreover, we consider two special additional functions nat/1 and geq/2 whose evaluation
on ground term is defined as follows:

• nat(D) ⇓ true (resp. false) if D ⇓M ∈ N (resp. M 6∈ N). Otherwise nat(D) ⇓ fail.

• geq(D1, D2) ⇓ true (resp. false) if for i = 1, 2, Di ⇓ Mi ∈ N and M1 ≥ M2 (resp.
M1 < M2). Otherwise geq(D1, D2) ⇓ fail.

2.2 Semantics

A configuration κ, E ,P, T ,A is given by a multiset P of processes, representing the current
state of the process, a set of names E representing the free names of P and the names created by
the adversary, the current phase κ, a set T of terms of the form tbl(M1, . . . ,Mn) representing
the elements inserted into tables, and a set A of terms known by the adversary. The semantics
of processes is defined through a reduction relation `−→o between configuration, defined in fig. 3,
where ` is either the empty label or a label of the form msg(M,N) or event(ev) with M,M
being terms and ev being an event.

9

κ, E ,P ∪ {{0}}, T ,A −→o κ, E ,P, T ,A (Nil)

κ, E ,P ∪ {{P | Q}}, T ,A −→o E ,P ∪ {{P,Q}}, T ,A (Par)

κ, E ,P ∪ {{!P}}, T ,A −→o E ,P ∪ {{P, !P}}, T ,A (Repl)

κ, E ,P ∪ {{new a;P}}, T ,A −→o κ, E ∪ {a′},P ∪ {{P{a
′
/a}}}, T ,A if a′ 6∈ E (Restr)

κ, E ,P ∪ {{out(N,M);P, in(N, x);Q}}, T ,A msg(N,M)−−−−−−→o κ, E ,P ∪ {{P,Q{M/x}}}, T ,A (I/O)

κ, E ,P, T ,A msg(N,M)−−−−−−→o κ, E ,P, T ,A if N,M ∈ A (Msg)

κ, E ,P ∪ {{let x = D in P else Q}}, T ,A −→o κ, E ,P ∪ {{P{M/x}}}, T ,A if D ⇓M (Let1)

κ, E ,P ∪ {{let x = D in P else Q}}, T ,A −→o κ, E ,P ∪ {{Q}}, T ,A if D ⇓ fail (Let2)

κ, E ,P ∪ {{out(N,M);P}}, T ,A msg(N,M)−−−−−−→o κ, E ,P ∪ {{P}}, T ,A ∪ {M} if N ∈ A (Out)

κ, E ,P ∪ {{in(N, x);Q}}, T ,A msg(N,M)−−−−−−→o κ, E ,P ∪ {{Q{M/x}}}, T ,A if N,M ∈ A (In)

κ, E ,P, T ,A −→o κ, E ,P, T ,A ∪ {M} (App)
if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓M

κ, E ,P, T ,A −→o κ, E ∪ {a′},P, T ,A ∪ {a′} if a′ 6∈ E (New)

κ, E ,P ∪ {{event(ev);P}}, T ,A event(ev)−−−−−→o κ, E ,P ∪ {{P}}, T ,A (Event)

κ, E ,P ∪ P>κ+1 ∪ {{phase κ+ 1;Pi}}ki=1, T ,A −→o κ+ 1, E ,P>κ+1 ∪ {{Pi}}ki=1, T ,A (Phase)
if all processes of P do not start with some phase κ′, κ′ > κ

and all processes of P>κ+1 start with some phase κ′, κ′ > κ+ 1

κ, E ,P ∪ {{insert tbl(M1, . . . ,Mn);P}}, T ,A −→o (Insert)
κ, E ,P ∪ {{P}}, T ∪ {tbl(M1, . . . ,Mn)},A

κ, E ,P ∪ {{get tbl(x1, . . . , xn) suchthat D in P else Q}}, T ,A −→o (Get1)
κ, E ,P ∪ {{Pσ}}, T ,A

if tbl(x1, . . . , xn)σ ∈ T and Dσ ⇓ true

κ, E ,P ∪ {{get tbl(x1, . . . , xn) suchthat D in P else Q}}, T ,A −→o (Get2)
κ, E ,P ∪ {{Q}}, T ,A

if for all σ, tbl(x1, . . . , xn)σ 6∈ T or ¬(Dσ ⇓ true)

Figure 3: Transitions between configurations.

An initial configuration is a closed configuration of the form 0, E , {{P}}, ∅,A where A con-
tains only names and E is the union of A with the free names of P . We will denote such initial
configuration E , P,A.

The reduction rule Nil removes the process 0 from the multiset since it does nothing,
the rule Par apply the parallel composition and the rule Repl duplicates the process P
hence modeling replication. The rule Restr generates new private names hence the condition
a′ 6∈ E . The rule I/O allows communication between an output and input. The rule Msg
indicates that the attacker is sending the message M on the channel N without interacting
with the honest process. The rules Let1 and Let2 define the semantics of the evaluation of
an expression D. Note that the condition D ⇓M expresses the fact that the evaluation of D
succeeded since M is a term hence not the expression constant fail. The rule Event executes
the event M .

10

Remark 1. The rule Msg in itself is not necessary for the execution of the protocol. How-
ever, it allows us to have a a strict correspondence with the original semantics of applied pi
calculus, that is an operational semantics. Such a semantics operates only on process and
not on configuration. In particular, the attacker actions are also described by a process. A
security property of some term M on a process P thus corresponds to checking that for all
attacker process Pa, Pa | P does not reveal M . In the next section, we will see that we
allow correspondence query to check wether a message M was sent on a channel N . In the
operational semantics, this would be possible when the communication occurs on within P
(corresponding to the rule I/O) or between Pa and P (corresponding to the rules Out and
In) or within Pa (corresponding to the rule Msg). I

A trace of a configuration C0 is a finite sequence C0
`1−→o C1

...−→o
`n−→o Cn.

Note that the syntax of processes does not explicitly include a conditional of the form
if M = N then P else Q. This is because it can be modeled by an assignment let x =
equals(M,N) in P else Q where x is fresh and equals/2 is a destructor function symbol defined
by def(equals) = [equals(x, x) → x]. We therefore will assume from now on that Fd contains
equals/2.

As we will see in the rest of this section, we aim to improve the verification of both
correspondence and equivalence queries. However, in order to explain how the algorithms work,
we need to define another semantics, the associated correspondence and equivalence queries
and finally show the soundness of this semantics w.r.t. to this main semantics. Therefore, to
avoid redefining every notion multiple times, we will introduce general definitions that we will
reuse in both semantics.

Generally, given S an infinite set, given→ a labeled binary relation on S and given A0 ∈ S,
we denote by trace(A0,→) = {A0

`1−→ A1
`2−→ . . .

`n−→ An} the set of traces from A0 by →.
Moreover, given a trace T ∈ trace(A0,→), if T = A0

`1−→ A1 → . . .
`n−→ An, we say that T

contains n steps. Given τ ∈ {0, . . . , n}, we denote by T [τ] the configuration A0. Furthermore,
we call the τ -th step of T the transition T [τ − 1]

`τ−→ T [τ]. Finally, we define maxstep(T) = n,
steps(T) = {0, . . . , n} and T(→) =

⋃
A∈S trace(A,→) the set of all traces by →.

Example 4. Belenios [CGG19] is a simple voting protocol used in more than 200 elections
each year. Each voter sends her vote encrypted with the public key of the election, and signed
with a credential. The encrypted vote is then published on a bulletin board. At the end of
the election, ballots are shuffled (using mixnets) and votes are published in a random order.
Other variants of Belenios exist with homomorphic encryption but we present here only a
simplified version, omitting for example the zero-knowledge proofs of correct decryption.

The behavior of a voter can be represented by the following process:

V (vote, sk) = in(c, xr);new r;
out(c, sign(aenc(vote, (r, xr), pk(ske)), sk))

This models the fact that the voting client uses both its own randomness and some external
randomness (typically from the server) to encrypt the vote.

For simplicity, we model the voting server together with the tally phase. The server receives
votes, checks the validity of signatures and once the election is over, publishes the decrypted
ballots in a random order.

Board=

11

in(c, x1); let y1 = checksign(x1, vk(ska)) in
in(c, x2); let y2 = checksign(x2, vk(sk b)) in
in(c, x3); let y3 = checksign(x3, vk(sk c)) in

out(c, adec(y1, ske))
| out(c, adec(y2, ske))
| out(c, adec(y3, ske))

The fact that the decrypted ballots are sent in a random order is modeled here by considering
three outputs in parallel: the adversary cannot distinguish the order of the output.

Then the process for modeling Belenios altogether is:

PBel = V (va, ska) | V (vb, sk b) | Board | Setup

where Setup is defined as:

out(c, vk(ska)) | out(c, vk(sk b)) | out(c, pk(ske))

PBel models a system with two honest voters and a dishonest one, whose secret key is sk c.
The initial configuration is C0 = E0, PBel,A0 with E0 = {c, ska, sk b, sk c, ske, va, vb} and A0 =
{c, sk c, va, vb} modeling the fact that the key sk c is known to the attacker while the other ones
are initially secret. The vote values va, vb are also given to the attacker.

Then a possible execution trace is

C0
msg(c,vk(ska))−−−−−−−−−→o

msg(c,vk(skb))−−−−−−−−−→o
msg(c,pk(ske))−−−−−−−−−→o C1

msg(c,r′a)−−−−−−→o
msg(c,ua)−−−−−−→o

msg(c,r′b)−−−−−−→o
msg(c,ub)−−−−−−→o C2

where we omit steps with no labels and uα = sign(aenc(vα, (rα, r
′
α), pk(ske)), skα), α ∈ {a, b}

and C2 = E2, P2,A2 with E2 = E0 ∪{ra, r′a, rb, r′b}, A2 = A0 ∪{vk(ska), vk(sk b), pk(ske), r
′
a, ua,

r′b, ub}, and P2 = Board . This trace corresponds to the emission of the initial messages of the
Setup process, followed by the execution of the processes of the two honest voters.

Then more interestingly, instead of casting a standard ballot, the attacker may copy Alice’s
ballot and sends it on behalf of the dishonest voter. This behavior is reflected by the trace

C2
msg(c,ua)−−−−−−→o

msg(c,ub)−−−−−−→o
msg(c,uc)−−−−−−→o C3. The board first receives the two honest ballots, and then

the adversarial one: uc = sign(checksign(ua, vk(ska)), sk c) = sign(aenc(v1, (ra, r
′
a), pk(k))), sk c).

As noticed in [CS13] in the context of the Helios protocol, this attack yields to a privacy
attack. Indeed, the outcome of the election will be {va, va, vb}, hence the attacker can deduce
that Alice voted va.

To avoid this attack, the bulletin board should never accept two identical encrypted votes.
This can be modeled in the process Board by checking that y1, y2, and y3 are pairwise distinct,
yielding a process Board ′. I

2.3 Security properties

In this paper, we focus on the three main way to express security properties, namely secrecy,
correspondence and equivalence properties.

12

2.3.1 Correspondence and secrecy properties

Atomic formulas. To express secrecy and correspondence properties, we consider facts,
temporal facts and atomic formulas whose syntax is given by the following grammar:

pev ::= event
event(e(M1, . . . ,Mn)) the event e(M1, . . . ,Mn) is executed, e ∈ Fe
injk-event(e(M1, . . . ,Mn)) the injective event e(M1, . . . ,Mn) is executed,

e ∈ Fie, k ∈ N

F ::= fact
pev an event
attκ(M) the attacker knows M at phase κ
msgκ(M,N) the message N was sent on the channel M at phase κ
tableκ(tbl(M1, . . . ,Mn)) the messages M1, . . . ,Mn are registered in the table tbl

at phase κ

F ::= temporal fact
F a fact
F@i a fact F at step i

φ ::= generic formula
M = N an equality
M 6= N a disequality
M ≥ N an inequality
isnat(M) M is a natural number
¬isnat(M) M is not a natural number

α ::= atomic formula
F a temporal fact
φ a generic predicate

ψ,ψ′ ::= query conclusion
> true
⊥ false
ψ ∧ ψ′ a conjunction
ψ ∨ ψ′ a disjunction
α an atomic formula
pev ψ a nested query
pev@i ψ a temporal nested query

% ::= correspondence query
F1 ∧ . . . ∧ Fn ⇒ ψ

In injective events injk-event(ev), the index k represents an occurrence. More specifically,
two injective events injk-event(ev1) and injk-event(ev2) with same index k in a query enforce
that the instances of ev1 and ev2 should occur at the same step.

13

Note that for attacker, message and table facts, we may simply write att(M), msg(M,N)
and table(tbl(M1, . . . ,Mn)) when there is no phase in the protocol. Given a fact F , we denote
by pred(F) the predicate of this fact (e.g. pred(atti(M)) = atti).

Temporal facts One of our contributions is the introduction of temporal facts in corre-
spondence query using the construct F@i where i is a variable, called temporal variable. It
indicates that the fact F is satisfied by the trace at the step i, e.g. event(Counter(c1))@i.
Traditional correspondence queries as defined in ProVerif 2.00 only allow to order the facts
of the premise of the query w.r.t. the facts in its conclusion. The nested queries included in
ProVerif 2.00 permits a limited comparison between facts in the conclusion of the query.
Temporal correspondence queries can be seen as a generalization of correspondence queries
allowing to order facts occurring anywhere in the query by comparing temporal variables
through inequalities, disequalities and equalities in the conclusion of the query. We impose
some restrictions on the temporal variables occurring in a query.

Definition 1. A temporal correspondence query is a correspondence query such that:

• temporal variables can only occur in generic formulas of the form i = j, i 6= j and i ≥ j
where both i and j are temporal variables (e.g. i+3 ≥ j, i > 5 and event(Counter(i))@i
are not valid atomic formulae when i,j are temporal variables).

• temporal variables can only be bound by at most one fact.

An atemporal correspondence query is a correspondence query that does not contain tem-
poral facts F@i.

In the rest of the paper, when we want to talk about a fact F occurring in a query that is
not necessarily a temporal fact, we will write F [@i], i.e. @i is optional.

Satisfaction relation We will consider several transition relations T(→) in the rest of the
paper. We have already defined −→o between configurations. We will consider a variant −→i,
that keeps track more carefully of replications. To prove equivalence properties, we will define
similar relations −→o′ and −→i′ between pairs of processes. To avoid duplicating the definitions,
some notions will be defined w.r.t. any binary relation →.

Given a binary labeled relation→ on some infinite set S, a satisfaction relation on ground
atomic formula for→ is a ternary relation `, denoted T, τ ` α, where T ∈ T(→), τ is a step of
T and α is a ground atomic formula such that if α is a generic predicate then the satisfiability
is independent of T and τ . In such a case, we will just denote ` α.

For configurations and the transition relation −→o, we define the following satisfaction
relation `o.

Definition 2. Let T ∈ T(−→o). Let τ ∈ steps(T). We define the satisfaction relation `o on
ground atomic formulas as follows:

• T, τ `o attκ(M) if and only if T [τ] −→∗o κ, E ,P, T ,A by only the rules App, New and
Phase such that M ∈ A.

• T, τ `o event(ev) (resp. injk-event(ev)) if and only if T [τ − 1]
event(ev)−−−−−→o T [τ].

• T, τ `o msgκ(N,M) if and only if T [τ − 1]
msg(N,M)−−−−−−→o T [τ] with T [τ] = κ, E ,P, T ,A.

14

• T, τ `o tableκ(tbl(M1, . . .Mn)) if and only if T [τ] = κ′, E ,P, T ,A with κ′ ≤ κ and
tbl(M1, . . . ,Mn) ∈ T .

• T, τ `o F@τ if and only if T, τ `o F .

• T, τ `o M = N (resp. M 6= N) if and only if M = N (resp. M 6= N).

• T, τ `o M ≤ N if and only if M,N ∈ N and M ≤ N (in their natural number represen-
tations).

• T, τ `o isnat(M) if and only if M ∈ N.

• T, τ `o ¬isnat(M) if and only if M /∈ N.

Note that T, τ `o attκ(M) holds even if M is not in the attacker’s knowledge A of the
last configuration C′ reached by T . Indeed, we wish T, τ `o attκ(M) to hold as soon as the
attacker may deduce M and even if M is not already explicitly in his knowledge. This is
why we consider any evolution C′ −→∗o κ, E ,P, T ,A that only uses attacker rules (App), nonce
generation (New) and phase progression (Phase).

Example 5. A query inj1-event(A(x))⇒ inj2-event(B(x)) requires that for any trace T , the
number of executions of event(A(M)) is smaller than the number of executions of event(B(M)),
i.e. to each execution event(A(M)) in T , we can associate a different execution event(B(M))
in T . I

A nested query pev ψ typically indicates that both pev and ψ hold and all facts of ψ
(e.g. events) are true before (w.r.t. the trace) the event pev. Note that it is different from the
implication symbol ⇒ that really corresponds to a logical implication.

Example 6. Consider the queries %1 = (event(C) ⇒ event(B) event(A)) and %2 =
(event(C) ∧ event(B) event(A)). In words, the query %1 intuitively indicates that if the
event C was executed then both events B and A must also be executed and A must have been
executed before B. On the other hand, the query %2 intuitively indicates that if the events C
and B are executed then the event A must also be executed.

Consider three traces T1, T2, T3 with T1[0]
event(A)−−−−−→o T1[1]

event(B)−−−−−→o T1[2]
event(C)−−−−−→o T1[3],

T2[0]
event(A)−−−−−→o T2[1]

event(C)−−−−−→o T2[2] and T3[0]
event(C)−−−−−→o T3[1]

event(A)−−−−−→o T3[2]
event(B)−−−−−→o T3[3].

On these specific traces, %1 holds on T1 and T3 but not on T2. On the other hand, %2 holds
on all three traces.

Notice that on T3, even though the event C is executed before the events A and B, both
queries hold on T3. This is due to the fact that ⇒ has no temporal requirement and only acts
as a logical implication, in contrast to . Of course, when proving a query on a process, we
check that the query holds on all traces, meaning that the query must hold on T3 but also on
any prefix of T3, which is not the case here. I

Example 7. The temporal query event(Counter(c1))@i ∧ event(Counter(c2))@j ⇒ i > j ∨
c1 ≤ c2 intuitively indicates that the values emitted in the event Counter can only increase
during the execution. I

Let us denote Sσ the set of all ground substitutions. In order to formally define the notion
of injectivity in a query

∧n
i=1 Fi ⇒ ψ, for all traces of the protocol, we will associate to each

fact and in particular each injk-event(ev) in ψ a partial function µ from steps(T)n × Sσ to

15

steps(T). Intuitively, this partial function specifies how we associate executions of F1, . . . , Fn
to an execution of injk-event(M). For example, if F1, . . . , Fn have been executed in T at
step τ1, . . . , τn respectively and have been instantiated by the substitution σ then the event
event(ev) (resp. injk-event(ev)) should be executed in T at step µ((τ1, . . . , τn), σ). Note that
we will associate to each event and injective event in ψ a different function µ.

Formally, given an integer n, an annotated query conclusion w.r.t. n is a formula Ψ defined
as follows:

µ, µ′, . . . ::= partial functions from steps(T)n × Sσ to steps(T) such that
for all τ̃ ∈ steps(T)n, for all σ ∈ Sσ, if µ(τ̃ , σ) is defined
then µ(τ̃ , σ) ≤ max(τ̃)

Ψ,Ψ′ ::= > | ⊥ | Ψ ∧Ψ′ | Ψ ∨Ψ′ | φ | Fµ | Fµ Ψ

Given an annotated query conclusion Ψ, we denote by Ψ the formula obtained from Ψ in
which all partial functions are removed.

Example 8. Consider the following correspondence query.

inj1-event(A(x)) ∧ event(B(y))⇒ inj2-event(C(x)) ∧ event(D(y))

Any formula Ψ = inj2-event(C(x))µ1 ∧ event(D(y))µ2 with µ1, µ2 two partial functions from
{0, . . . ,m}2 × Σ to {0, . . . ,m} is an annotated query conclusion w.r.t. (2,m) and Ψ =
inj2-event(C(x)) ∧ event(D(y)). I

Definition 3. Let n ∈ N and let Ψ be a ground annotated query conclusion w.r.t. n. Let →
be a binary relation.

A valuation of Ψ is a tuple (`, T, (τ̃ , σ)) where ` is a satisfaction relation on ground atomic
formulas for →, T ∈ T(→), τ̃ ∈ steps(T)n and σ ∈ Sσ. The satisfaction relation |= for the
formula Ψ, denoted (`, T, (τ̃ , σ)) |= Ψ, is defined as follows:

(`, T, (τ̃ , σ)) |= φ iff ` φ
(`, T, (τ̃ , σ)) |= Fµ iff µ(τ̃ , σ) is defined and T, µ(τ̃ , σ) ` F
(`, T, (τ̃ , σ)) |= Fµ Ψ iff (`, T, (τ̃ , σ)) |= Fµ ∧Ψ and

for all F′µ
′ in Ψ, µ′(τ̃ , σ) defined implies µ′(τ̃ , σ) ≤ µ(τ̃ , σ)

(`, T, (τ̃ , σ)) |= Ψ ∧Ψ′ iff (`, T, (τ̃ , σ)) |= Ψ and (`, T, (τ̃ , σ)) |= Ψ′

(`, T, (τ̃ , σ)) |= Ψ ∨Ψ′ iff (`, T, (τ̃ , σ)) |= Ψ or (`, T, (τ̃ , σ)) |= Ψ′

(`, T, (τ̃ , σ)) |= >

We can now formally define the satisfiability of a correspondence query.

Definition 4. Let % = (
∧n
i=1 Fi ⇒ ψ) be a temporal correspondence query. Let → be a binary

relation.
For all satisfaction relations ` on ground atomic formulas for→, for all S ⊆ T(→), we say

that `, S satisfy %, denoted (`,S) |= % if and only if for all T ∈ S, there exists an annotated
query conclusion Ψ w.r.t. n such that Ψ = ψ and:

1. for all tuple of steps τ̃ = (τ1, . . . , τn), for all substitutions σ, if T, τj ` Fjσ for j = 1 . . . n
then there exists σ′ such that Fjσ = Fjσ

′ for j = 1 . . . n and (`, T, (τ̃ , σ)) |= Ψσ′.

16

2. for all injk-event(ev)[@i]µ occurring in Ψ, µ(τ̃ , σ) = µ(τ̃ ′, σ′) implies that τj = τ ′j for all
j such that Fj = injkj -event(evj) for some kj , evj.

3. for all injk1-event(ev1)[@i1]µ1 and injk2-event(ev2)[@i2]µ2 occurring in Ψ, k1 = k2 im-
plies µ1 = µ2

The first bullet point of definition 4 intuitively checks that the events in the query are
always executed before F1, . . . ,Fn. The second bullet point checks the injective requirements
of the query are satisfied. Finally, the third bullet ensures that injective events with the same
injective index are associated with the same partial function. Injective indices are very useful
as they ensure that correspondence queries are stable by boolean distributivity.

Lemma 1. Let % = (
∧n
i=1 Fi ⇒ ψ[ψA ∧ (ψB ∨ψC)]). For all satisfaction relation ` on ground

atomic formulas for →, for all S ⊆ T(→),

(`,S) |= % if and only if (`,S) |=
n∧
i=1

Fi ⇒ ψ[(ψA ∧ ψB) ∨ (ψA ∨ ψC)]

Thanks to lemma 1, we can always transform a query F1∧ . . .∧Fn ⇒ ψ into a query where
ψ is in disjunctive normal form (DNF), that is i.e. ψ =

∨
i

∧
j ψi,j where all ψi,j are either

facts, generic predicates or nested queries of the form F ψ′ with ψ′ in DNF.

Remark 2. Our definition of correspondence query is in fact a generalization of the one
in [Bla09]. First, they only consider queries directly in disjunctive normal form. Second,
injective events do not have injective indices. Both generalizations are in fact closely related.
Indeed, the satisfaction relation defined in [Bla09] corresponds to our definition when all the
injective indices are disjoints. However in such a case, the satisfaction is not stable anymore
by boolean distributivity.

For example, the query inj1-event(A)⇒ inj2-event(B)∧(event(C)∨event(D)) is equivalent
to inj1-event(A)⇒ (inj2-event(B)∧event(C))∨(inj2-event(B)∧event(D)) but is not equivalent
to inj1-event(A)⇒ (inj2-event(B) ∧ event(C)) ∨ (inj3-event(B) ∧ event(D)). I

Remark 3. In an input file of this paper’s ProVerif, injective events are declared without
injective indices as the tool consider that all injective events have distinct injective indices.
Internally, upon parsing the query, ProVerif associates a fresh injective index to each injective
event and apply boolean distributivity rules to transform the query in disjunctive normal form.
Lemma 1 guarantees the correctness of this transformation. I

Note that the secrecy of a closed term M can be expressed as the correspondence query
attκ(M)⇒ ⊥.

The previous definition gives us a generic definition of satisfiability of a correspondence
query that mainly depends on a set of traces given as input. Of course, our main goal is to
prove the the satisfiability of a correspondence query given some initial configuration within
the semantics defined in fig. 3 and the relation `o. This is expressed in the following definition.

Definition 5. Let C = 0, E ,P, ∅,A be a closed configuration such that names(A)∪names(P) ⊆
E. Let % be a temporal correspondence query such that names(%) ⊆ E. We say that C satisfies
% when (`o, trace(C,−→o)) |= %.

17

2.3.2 Equivalence properties

Privacy properties are often modeled using equivalence properties. In particular, observational
equivalence, a weak bisimulation stable by context, intuitively guarantees that an attacker
cannot see any difference between observationally equivalent processes. In [BAF08], it was
shown that ProVerif can prove equivalence between two processes P and Q that differ only
by the terms they contain. To do so, ProVerif represents P and Q as a single process
(called biprocess). Then it proves observational equivalence between P and Q by proving a
trace property on the biprocess. More specifically, they introduced a notion of convergent
bitraces and showed that observational equivalence holds when all bitraces of the biprocess
are convergent. In this paper, we will only focus on improving the verification of convergence
of bitraces and we refer the reader to [BAF08] for the link between observational equivalence
and biprocesses.

The grammar of biprocesses is the same as in Figure 2 with the addition of diff[M,M ′] for
terms and diff[D,D′] for expressions. Given a biprocess P , we define fst(P) (resp. snd(P)) as
the process obtained from P by replacing all instances of diff[M,M ′] with M (resp. M ′) and
all instances of diff[D,D′] with D (resp. D′).

The semantics on biprocesses is defined by a relation −→o′ obtained from the relation −→o

from Figure 3 except that the rules (I/O), (Out), (In), (App) (Let1), (Let2), (Get1) and
(Get2) are defined in Figure 4.

κ, E ,P ∪ {{out(N,M);P, in(N ′, x);Q}}, T ,A msg(N,M)−−−−−−→o′ κ, E ,P, T ,A ∪ {{P,Q{M/x}}} (I/O)
if fst(N) = fst(N ′) and snd(N) = snd(N ′)

κ, E ,P ∪ {{out(N,M);P}}, T ,A msg(N,M)−−−−−−→o′ κ, E ,P ∪ {{P}}, T ,A ∪ {M} (Out)
if N ′ ∈ A, fst(N) = fst(N ′) and snd(N) = snd(N ′)

κ, E ,P ∪ {{in(N, x);Q}}, T ,A msg(N,M)−−−−−−→o′ κ, E ,P ∪ {{Q{M/x}}}, T ,A (In)
if N ′,M ∈ A, fst(N) = fst(N ′), snd(N ′) = snd(N ′)

κ, E ,P, T ,A −→o′ κ, E ,P, T ,A ∪ {diff[N1, N2]} (App)
if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd,

fst(f(M1, . . . ,Mn)) ⇓ N1 and snd(f(M1, . . . ,Mn)) ⇓ N2

κ, E ,P ∪ {{let x = D in P else Q}}, T ,A −→o′ κ, E ,P ∪ {{P{diff[M1,M2]/x}}}, T ,A (Let1)
if fst(D) ⇓M1 and snd(D) ⇓M2

κ, E ,P ∪ {{let x = D in P else Q}}, T ,A −→o′ κ, E ,P ∪ {{Q}}, T ,A (Let2)
if fst(D) ⇓ fail and snd(D) ⇓ fail

κ, E ,P ∪ {{get tbl(x1, . . . , xn) suchthat D in P else Q}}, T ,A −→o′ (Get1)
κ, E ,P ∪ {{Pσ}}, T ,A

if tbl(x1, . . . , xn)σ ∈ T , fst(Dσ) ⇓ true and snd(Dσ) ⇓ true

κ, E ,P ∪ {{get tbl(x1, . . . , xn) suchthat D in P else Q}}, T ,A −→o′ (Get2)
κ, E ,P ∪ {{Q}}, T ,A

if for all σ, tbl(x1, . . . , xn)σ 6∈ T or (¬(fst(Dσ) ⇓ true) and ¬(snd(Dσ) ⇓ true))

Figure 4: Semantics of biprocesses −→o′

Note that biprocesses can be seen as a generalization of processes. Indeed, a process is a

18

biprocess P that does not contain any diff, i.e. fst(P) = snd(P). Hence we can reuse every
notion we defined on configurations and traces so far.

We introduce the notion of convergent trace that allows to prove observational equivalence.

Definition 6. We say that T ∈ T(−→o′) converges, denoted T↓↑, when for all steps τ , T [τ] =
κ, E ,P, T ,A implies:

• if P = P ′ ∪ {{out(N,M);P, in(N ′, x);Q}} or P = P ′ ∪ {{out(N,M);P}} and N ′ ∈ A or
P = P ′ ∪ {{in(N, x);P}}, N ′ ∈ A then

fst(N) = fst(N ′) iff snd(N) = snd(N ′)

• if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd then

fst(f(M1, . . . ,Mn)) ⇓ fail iff snd(f(M1, . . . ,Mn)) ⇓ fail

• if P = P ′ ∪ {{let x = D in P else Q}} then fst(D) ⇓ fail iff snd(D) ⇓ fail.

• if P = P ′ ∪ {{get tbl(x1, . . . , xn) suchthat D in P else Q}} and tbl(x1, . . . , xn)σ ∈ T for
some σ then fst(Dσ) ⇓ true iff snd(Dσ) ⇓ true

We extend the notion to set of traces as expected, i.e. S↓↑ if and only if for all T ∈ S, T↓↑.

The following theorem shows the soundness of convergence w.r.t. observational equiva-
lence.

Proposition 1 ([BAF08]). For all closed biconfigurations C, if trace(C,−→o′)↓↑ then fst(C) and
snd(C) are observationally equivalent (as defined in [BAF08]).

2.3.3 Correspondence queries on bitraces

In this paper, we introduce the notion of correspondence queries on bitraces. Though the
main goal of biprocesses is to prove equivalence queries, we use the correspondence queries
on convergent bitraces to help the proof of equivalence by the means of axioms and lemmas
(see section 2.4). Fundamentally, a correspondence query on convergent bitraces is exactly the
same as a correspondence query on standard traces except that facts are replaced by bifacts.
Formally, we consider the algebra for queries defined in Section 2.3.1 where injective events
are removed and where we replace:

• events event(e(M1, . . . ,Mn)) by event′(e(M1, . . . ,Mn), e(M ′1, . . . ,M
′
n));

• facts attκ(M) by att′κ(M,M ′)

• facts msgκ(M,N) by msg′κ(M,N,M ′, N ′)

• facts tableκ(tbl(M1, . . . ,Mn)) by table′κ(tbl(M1, . . . ,Mn), tbl(M ′1, . . . ,M
′
n))

We can also define the satisfaction relation `o′ similarly to `o. For instance, given a bitrace
T and a step τ , T, τ `o′ att′κ(M,M ′) if and only if T [τ] −→∗o′ κ, E ,P, T ,A by only the rules
App, New and Phase such that there exists M ′′ ∈ A with fst(M ′′) = M and snd(M ′′) = M ′.

Definition 7. Let C = 0, E ,P, ∅,A be a closed biconfiguration such that names(A)∪names(P) ⊆
E. Let % be temporal a correspondence query on bitraces such that names(%) ⊆ E. We say that
C satisfies % when (`o′ , trace(C,−→o′)) |= %.

19

2.4 Axioms, restriction and lemmas

In order to verify correspondence and equivalence queries, ProVerif intuitively transforms
the process into a set of Horn clauses and applies a saturation procedure based on resolu-
tion. Once a fixpoint is reached, the algorithm will verify the query only on the saturated
clauses. Note that the clauses generated and the saturation procedure for the correspondence
queries and for equivalence queries differ but the main idea of the algorithms stays the same:
(i) generate initial set of Horn clauses (ii) saturate the set of clauses until a fixpoint is reached
(iii) verify the query on the saturated set of Horn clauses. When ProVerif is not able to
terminate (more precisely, when it does not seem to terminate), it is generally due to the
saturation procedure which does not reach a fixpoint. To help ProVerif terminate, sev-
eral heuristics are available (modifying for instance how names are represented internally or
on which clauses the resolution is applied). In this paper, we will focus only on the secrecy
heuristic (details on all available heuristics can be found in [Bla16, BSCS17]).

In a ProVerif input file, a user is allowed to declare terms, sayM , as secret, meaning that
the input process should satisfy the secrecy of any ground instances of M . These declarations
can be seen as intermediate properties for the saturation procedure. Indeed, ProVerif can
remove during the saturation procedure Horn clauses that contradict the secrecy of M . Since
fewer clauses are generated, this potentially helps the saturation procedure to terminate. Of
course, ProVerif also verifies that the secrecy ofM is really satisfied by the protocol ensuring
that ProVerif never proves something incorrect.

In this paper, we generalize these intermediate properties, called lemmas, to a subclass
of correspondence queries. Typically, ProVerif will first prove theses lemmas and then use
them during the saturation procedure of the main query. We also allow the declaration of
axioms that are properties that are true but do not need to be proved. Finally, we introduce
restrictions to model assumptions: only traces that satisfy the restrictions will be considered.
It can be used e.g. to specify that a ressource can be accessed by at most one process, without
a heavy encoding with private channels.

Note that this idea of lemmas and axioms is not novel in the field of automatic verifier: A
proof in Tamarin usually consists of many lemmas and axioms; and a proved lemma or an
axiom can be used to help proving other lemmas along the road.

Definition 8. A ProVerif lemma, axiom, restriction is a atemporal correspondence query
F1 ∧ . . . ∧ Fn ⇒ ψ such that ψ only contain events and generic predicates (i.e. no injective
event, nested query, attacker fact, message fact and table fact).

Example 9. The ProVerif lemma att(M) ⇒ ⊥ corresponds to a secrecy declaration in
ProVerif 2.00. I

As previously mentioned, restrictions model assumptions meaning that given a query %
and a set of restrictions R, we will be interested to prove the query % only on the trace that
are satisfied by all restrictions in R. Formally, given C = 0, E ,P, ∅,A a closed configuration
such that names(A) ∪ names(P) ⊆ E , given % be a temporal correspondence query such that
names(%) ⊆ E , given R a set of restrictions, we want to prove the following:

(`o, {T ∈ trace(C,−→o) | ∀%′ ∈ R, (`o, {T}) |= %′} |= %

To simplify the reading, we will denote the above formula as follows: (`o, trace(C,−→o)|R) |= %.

20

3 Instrumented processes

ProVerif generates a set of clauses representing both the protocol and the attacker capa-
bilities. Intuitively, these clauses mimic the semantics of processes. However, the freshness
requirement of the rule Restr is difficult to encode in clauses. To handle this, [BAF08, Bla09]
introduce instrumented processes in which replications are indexed with some identifier and
all names a are replaced by a pattern a[x1, . . . , xn] where the variables x1, . . . , xn model which
input and replication this name depends on. Therefore, two names depending on different
replication identifiers will be considered as different, i.e. thus modeling the freshness of the
term.

Syntax. ProVerif models messages inside clauses by patterns and may-fail patterns de-
fined as follows:

pt ::= pattern
x, y, z variables
i variable session identifier
λ constant session identifier
f(pt1, . . . , ptn) constructor application
a[pt1, . . . , ptn] name

mpt ::= may-fail pattern
u, v may-fail variables
pt pattern
fail failure

An instrumented process is intuitively a process where each occurence of a replication,
input, event, or table lookup in a process is associated with an occurrence label in the form of
a name usually denoted o. We require that, in the initial process, each of these names occurs
at most once.

Example 10. Consider a process P = !in(c, x); out(c, h(x)); in(c, y). A corresponding instru-
mented process of P would be the process !o1 ino2(c, x); out(c, h(x)); ino3(c, y). I

During the saturation procedure, we will need to distinguish the standard variables that
are used in the protocol and the variables for session identifier. Hence, we consider a new
infinite set of variables denoted V! and distinct from V. Similarly, we consider a new infinite
set of constant session identifier, denoted Λ.

Semantics. An instrumented configuration κ, ρ,P, T ,A,Λ is similar to a configuration with
the following differences:

• Λ is the set of already used session identifiers

• ρ is a mapping from names to patterns

• P is a multiset of quadruples (P,O, I) where:

– P is an instrumented process

21

– O is a list of names corresponding to the occurence labels of already reduced inputs,
reduced table lookup and replications that occur above P

– I is the list of patterns corresponding to terms received by the inputs, lookup tables
and of session identifiers of replications that occur above P .

The semantics is displayed in Figure 5. We say that an initial instrumented configuration is
a closed instrumented configuration of the form 0, ρ, {{(P, ∅, ∅)}}, ∅,A, ∅ where A only contains
names, dom(ρ) is the union of A with the free names of P and aρ = a[] for all a ∈ dom(ρ).
We will denote such initial instrumented configuration ρ, P,A.

The initial instrumented configuration associated to the initial configuration E , P,A is the
configuration ρ, P,A where ρ = {a 7→ a[] | a ∈ E}.

We can show the links between the different sequences of labels and patterns (O, I) found
in the instrumented semantics.

Definition 9. Let (O1, I1) = ([o1, . . . , on], [pt1, . . . , ptn]) and (O2, I2) = ([o′1, . . . , o
′
m], [pt′1, . . . ,

pt′m]) two pairs of sequences of occurrence labels and sequences of patterns. We say that
(O1, I1) and (O2, I2) are compatible when for all k ∈ N, for all i ≤ k, if the ith pattern in I1

and I2 coincides and is a session identifier, that is pti = pt′i, pti is a session identifier, and if
the labels coincide in O1 and O2 up to the index k, that is for all j ≤ k, oj = o′j then

• the previous patterns coincide as well: for all ` ≤ i, pt` = pt′`;

• and the patterns still coincide until the next session identifier: for all k ≥ ` > i, if for
all i < `′ ≤ `, pt`′ is not a session identifier then pt` = pt′`.

Sequences of labels and patterns (O, I) found in successive configurations are compatible.

Lemma 2. Let C be a closed instrumented configuration. For all C −→∗i n1, ρ1,P1, T1,A1,Λ1 −→∗i
n2, ρ2,P2, T2,A2,Λ2, for all (P1,O1, I1) ∈ P1, for all (P2,O2, I2) ∈ P2, (O1, I1) and (O2, I2)
are compatible.

This lemma is intuitively a consequence of the application of the rule I-Repl. More
specifically, notice that every time this rule is applied, we instantiate a replication variables
by a session identifier not already used, i.e. that is not in Λ. Therefore, if two instances of an
instrumented name a[pt1, . . . , pn] and a[pt′1, . . . , pt

′
n] can be found in a trace with pti = pt′i ∈ Λ,

we can deduce that all the instantiations of replication variables should be the same. Moreover,
this property also expresses the fact that each input can only be executed once within a single
trace.

It remains to show the soundness of our transformation. The instrumented semantics
introduce patterns that allows us to encode the freshness of names within patterns. Thus, in
a query, we consider atomic formula that contains patterns instead of terms. To simplify the
reading, we overload the predicates attκ, msgκ, . . . to take as arguments patterns. Moreover,
we also overload the predicate event as being a predicate of arity 2 that includes the occurrence
pattern (similarly for the predicate injk-event. Thus, when ev is an event pattern and o is
an occurrence pattern, we write event(o, ev) for the predicate that describe the fact that the
event ev was trigger at occurrence o. Adding the occurrence as additional argument will be
useful later on for proving injective queries.

Formally, the satisfaction relation `i on traces of T(−→i) is defined by adapting the sat-
isfaction relation `o to instrumented configurations. For instance, T, τ `i event(o, ev) (resp.

22

P ∪ {{(0,O, I)}} −→i P (I-Nil)

P ∪ {{(P | Q,O, I)}} −→i P ∪ {{(P,O, I), (Q,O, I)}} (I-Par)

P ∪ {{(!oP,O, I)}},Λ −→i P ∪ {{(P, (O, o), (I, λ)), (!oP,O, I)}},Λ ∪ {λ} if λ 6∈ Λ (I-Repl)

ρ,P ∪ {{(new a;P,O, I)}} −→i (ρ[a′ 7→ a[I]]),P ∪ {{(P{a′/a},O, I)}} (I-Restr)
where a′ 6∈ dom(ρ)

κ, ρ,P ∪ {{(out(N,M);P,O, I), (ino(N, x);Q,O′, I ′)}} msg(Nρ,Mρ)−−−−−−−−→i (I-I/O)
κ, ρ,P ∪ {{(P,O, I), (Q{M/x}, (O′, o), (I ′,Mρ))}}

κ, ρ,A msg(Nρ,Mρ)−−−−−−−−→i κ, ρ,A if N,M ∈ A (I-Msg)

P ∪ {{(let x = D in P else Q,O, I)}} −→i P ∪ {{(P{M/x},O, I)}} if D ⇓M (I-Let1)

P ∪ {{(let x = D in P else Q,O, I)}} −→i P ∪ {{(Q,O, I)}} if D ⇓ fail (I-Let2)

P ∪ {{(out(N,M);P,O, I)}},A msg(Nρ,Mρ)−−−−−−−−→i P ∪ {{(P,O, I)}},A ∪ {M} if N ∈ A (I-Out)

κ, ρ,P ∪ {{(ino(N, x);Q,O, I)}},A msg(Nρ,Mρ)−−−−−−−−→i (I-In)
κ, ρ,P ∪ {{(Q{M/x}, (O, o), (I,Mρ))}},A

if N,M ∈ A
P,A −→i P,A ∪ {M} (I-App)

if M1, . . . ,Mn ∈ A, f/n ∈ Fc ∪ Fd and f(M1, . . . ,Mn) ⇓M
ρ,A −→i (ρ[a′ 7→ b0[λ]]),A ∪ {a′} if a′ 6∈ dom(ρ) and b0[λ] 6∈ img(ρ) (I-New)

ρ,P ∪ {{(evento(ev);P,O, I)}} event(o[I],evρ)−−−−−−−−−→i ρ,P ∪ {{(P,O, I)}} (I-Event)

κ,P ∪ P>κ+1 ∪ {{(phase κ+ 1;Pi,Oi, Ii)}}ki=1 −→i κ+ 1,P>κ+1 ∪ {{(Pi,Oi, Ii)}}ki=1 (I-Phase)
if all processes of P do not start with some phase κ′, κ′ > κ

and all processes of P>κ+1 start with some phase κ′, κ′ > κ+ 1

P ∪ {{(insert tbl(M1, . . . ,Mn);P,O, I)}}, T −→i (I-Insert)
P ∪ {{(P,O, I)}}, T ∪ {tbl(M1, . . . ,Mn)}

κ, ρ,P ∪ {{(geto tbl(x1, . . . , xn) suchthat D in P else Q,O, I)}}, T −→i (I-Get1)
κ, ρ,P ∪ {{(Pσ, (O, o), (I, tbl(x1, . . . , xn)σρ))}}, T

if tbl(x1, . . . , xn)σ ∈ T and Dσ ⇓ true

P ∪ {{(geto tbl(x1, . . . , xn) suchthat D in P else Q,O, I)}}, T −→i (I-Get2)
P ∪ {{(Q,O, I)}}, T

if for all σ, tbl(x1, . . . , xn)σ 6∈ T or ¬(Dσ ⇓ true)

For clarity sake, we only show the components of the configuration that are either modified
or used by the rules.

Figure 5: Instrumented semantics −→i

23

injk-event(o, ev)) if and only if T [τ − 1]
event(o,ev)−−−−−−−→i T [τ]. For the attacker predicate, we

apply the mapping ρ that transforms names into patterns: T, τ `i attκ(Mρ) if and only if
T [τ] −→∗i κ, ρ,P, T ,A,Λ by only the rules I-App, I-New and I-Phase such thatM ∈ A. Sim-

ilarly, T, τ `i msgκ(N,M) if and only if T [τ − 1]
msg(N,M)−−−−−−→i T [τ] with T [τ] = κ, ρ,P, T ,A,Λ.

Note that for the predicate msgκ(N,M), N and M are already patterns by definition of the
instrumented semantics (see Figure 5).

Finally, to show the soundness of our transformation, we need to show how we transform
a query into a query with patterns. Given C = E , P,A an initial configuration, a query % must
always satisfy names(%) ⊆ E . Thus, the basic transformation will be to apply the mapping ρ
on % where ρ = [a 7→ a[] | a ∈ names(%)]. However, event pattern predicates take an additional
argument (the occurrence). Therefore, we modify the query % by replacing all atomic formulae
α in % with: (i) αρ when α is not an event fact; and (ii) event(x, evρ) with x a fresh variable
when α = event(ev). We denote by [%]i the query obtained by this transformation.

Lemma 3. Let C = E , P,A be an initial configuration and let CI be its associated initial
instrumented configuration. Let % be a correspondence query such that names(%) ⊆ E. Let R
be a set of restrictions.

We have (`o, trace(C,−→o)|R) |= % if and only if (`i, trace(CI ,−→i)|[R]i) |= [%]i.

For equivalences properties, similarly to how we defined semantics for biprocess from −→o,
we also define an instrumented semantics −→i′ for biprocess from −→i. In a query for bitrace,
the event event(ev) is replaced by the event event′(ev1, ev2) that already takes two arguments
(the value of the event on the first and second projection of the trace). Though we overloaded
the predicate event with the occurrence for the instrumented semantics, we do not consider
additional arguments for the event pattern predicate for bitrace in the instrumented semantics.
Hence, event′(ev1, ev2) will only be replaced by event′(ev1ρ, ev2ρ). As we explained earlier,
we introduce occurrence as additional argument to help proving injective queries. However,
correspondence queries on bitrace will only be used as lemmas or restrictions to help proving an
equivalence query. Since lemmas are non-injective queries (see Definition 8), we can therefore
omit the occurrence in the events for bitraces. Thus, given a query for bitrace %, we denote
[%]i′ the query with patterns obtained from % by replacing all atomic formulae α in % by αρ
where ρ = [a 7→ a[] | a ∈ names(%)]. Finally, we define the satisfaction relation `i′ from `i
and the convergence of trace T ∈ T(−→i′), denoted T ↓↑i, by adapting the convergence ↓↑ to
instrumented traces as expected.

Lemma 4. Let C = E , P,A be an initial biconfiguration and let CI be its associated initial
instrumented biconfiguration. Let R be a set of bi-restrictions. We have trace(C,−→o′)|R↓↑ if
and only if trace(CI ,−→i′)|[R]i↓↑.

Lemma 5. Let C = E , P,A be an initial biconfiguration and let CI be its associated ini-
tial instrumented biconfiguration. Let % be a correspondence query on bitraces such that
names(%) ⊆ E. Let R be a set of bi-restrictions. We have:

(`o′ , trace(C,−→o′)|R) |= % if and only if (`i′ , trace(CI ,−→i′)|[R]i) |= [%]i′

3.1 Transforming temporal queries in atemporal queries

The core algorithms in ProVerif can only prove atemporal correspondence queries. We show
in this section how we can encode temporal queries into atemporal ones, mostly relying on

24

nested queries and occurrences. We first link in the following lemma occurrence and steps in
the trace.

Lemma 6. Let C be an initial instrumented configuration. Let T ∈ trace(CI ,−→i). For all
ground facts F = event(o, ev), F ′ = event(o′, ev′), for all steps τ, τ ′, if T, τ `i F and T, τ ′ `i F ′
then τ = τ ′ if and only if o = o′.

Proof. The right implication is trivial since two different events cannot be satisfied at the
same step. For the left implication, we first need to recall that in the initial instrumented
configuration, each occurrence can occurs at most once. After some transition it is possible
that an occurrence name occurs multiple times due to the replication rule. However, each
application of the rule I-Repl on P ∪{{(!oP,O, I)}},Λ generates a fresh session identifier that
is added in I, that is (P, (O, o), (I, λ)) with λ 6∈ Λ. Finally, only the rule I-Event, i.e.

ρ,P ∪ {{(evento(ev);P,O, I)}} event(o[I],evρ)−−−−−−−−−→i ρ,P ∪ {{(P,O, I)}}, can emit events. Hence, if
T, τ `i F with F = event(o, ev) being a ground fact, we necessarily have that o is a name of
the form o′[I ′] in which I ′ includes all session identifiers. Since all session identifiers are always
freshly generated and the occurrence names occur at most once in the initial instrumented
configuration, we conclude that two events satisfied at different steps of the trace necessarily
either have different occurrence names or different session identifiers.

Thanks to Lemma 6, we can now express disequalities and equalities between temporal
variables as disequalities and equalities between occurrences. Inequalities between temporal
variables will be represented as nested queries.

Consider an initial configuration C = E , P,A and a temporal query % such that names(%) ⊆
E . Consider ρ = [a 7→ a[] | a ∈ names(%)]. The transformation of % to an atemporal query,
denoted [%]@i , has some restrictions as some queries cannot be transformed into atemporal
query.

Formally, [%]@i raises an error when there exists two temporal variables i, j bound respec-
tively by F@i, G@j in % and there exists:

• i = j or i 6= j in % such that either F or G is not an event.

• i > j or i ≥ j in % such that F is not an event.

Assuming that [%]@i does not raises an error, the transformation proceeds as follows:

1. For all temporal variables i and j bound respectively by F@i and G@j in %, replace all
occurrences of i > j in % by F@i G@j ∧ j 6= i if G is an event else F@i G@j

2. For all temporal variables i and j bound respectively by F@i and G@j in %, replace all
occurrences of i ≥ j in % by F@i G@j.

3. Generate a bijection β from the temporal variables in % to fresh variables.

4. For all temporal variables i and j bound respectively by F@i and G@j in %, replace all
occurrences of i = j (resp. i 6= j) in % by iβ = jβ (resp. iβ 6= jβ).

5. Replace all occurrences of

(a) event(ev)@i (resp. injk-event(ev)@i) by event(iβ, evρ) (resp. injk-event(iβ, evρ)).

25

(b) event(ev) (resp. injk-event(ev)) by event(x, evρ) (resp. injk-event(x, evρ)) where x
is a fresh variable.

(c) facts F [@i] where F is not an (injective) event by Fρ

(d) generic formulas φ by φρ.

Lemma 7. Let C = E , P,A be an initial configuration and let CI be its associated initial
instrumented configuration. Let % be a temporal correspondence query such that names(%) ⊆ E.
let R be a set of restrictions. If [%]@i does not raise an error then we have (`o, trace(C,−→o

)|R) |= % if and only if (`i, trace(CI ,−→i)|[R]i) |= [%]@i .

Since we showed how to transform a temporal correspondence query into an atemporal
correspondence query, for the rest of the paper, we will always assume that correspondence
query are atemporal.

3.2 Restricting the trace search space

We restrict the traces we consider in the instrumented semantics in order to speed up the
saturation procedure. First, we want to restrict the tuples (τ1, . . . , τn) we verify when proving
(`i, trace(CI ,−→i)) |= %. In particular, in Definition 4, when we consider a tuple (τ1, . . . , τn)
and a substitution σ, we check that T, τj `i Fjσ. However, when Fj is an attacker or table
fact, if T, τj `i Fjσ then T, τ ′j ` Fjσ for all τ ′j ≥ τj . Thus, instead of considering all the
steps where Fjσ holds, we will intuitively consider only the first step on which Fjσ holds.
Hence, we need to restrict the satisfaction relation `i for the premise of the query. Note that
this restriction in the search space concerns only the satisfaction relation for the premise of
the query. To preserve soundness, we do not want to restrict the satisfaction relation for the
conclusion of the query. As such, we extend Definition 4 by distinguishing these satisfaction
relations:

Definition 10. Let % = (
∧n
i=1 Fi ⇒ ψ) be a correspondence query. Let→ be a binary relation.

For all satisfaction relations `∀, `∃ on ground atomic formulas for →, for all S ⊆ T(→),
we say that `∀,`∃, S satisfy %, denoted (`∀,`∃,S) |= % if and only if for all T ∈ S, there exists
an annotated query conclusion Ψ w.r.t. (n,m) such that m = maxstep(T), Ψ = ψ and:

• for all tuples of steps τ̃ = (τ1, . . . , τn), for all substitutions σ, if T, τj `∀ Fjσ for j =
1 . . . n then there exists σ′ such that Fjσ = Fjσ

′ for j = 1 . . . n and (`∃, T, τ̃) |= Ψσ′.

• for all injk-event(o, ev)µ occurring in Ψ, µ(τ̃ , σ) = µ(τ̃ ′, σ′) implies that τj = τ ′j for all
j such that Fj = injkj -event(oj , evj) for some kj , evj.

• for all injk1-event(o1, ev1)µ1 and injk2-event(o2, ev2)µ2 occurring in Ψ, k1 = k2 implies
µ1 = µ2

When verifying a query, we will often call `∀ the universal satisfaction relation and `∃ the
existential satisfaction relation.

Given a set of restrictions R, we will denote (`∀,`∃,S|R) |= % for the following:

(`∀,`∃, {T ∈ S | ∀%′ ∈ R, (`∀,`∃, {T}) |= %′}) |= %

26

As mentioned before, the existential satisfaction relation will still be the relation `i on
instrumented traces. Hence, it remains to define the universal satisfaction relation that we
will use to restrict the search space. Moreover, we will also restrict the set of traces we consider
by only taking a subset of trace(CI ,−→i). The rest of this section is dedicated to the definition
of this subset and the universal satisfaction relation we will consider.

3.2.1 Data constructor function symbols

A data constructor function is always associated with all its projection symbols. Thus, when
an attacker learns a term M = f(M1, . . . ,Mn), he can always retrieve M1, . . . ,Mn by apply-
ing the different projections of f to M . This property is reflected in ProVerif during the
saturation and verification procedure: a predicate attκ(f(M1, . . . ,Mn)) in the hypothesis of
a clause will be automatically transformed in the conjunction attκ(M1) ∧ . . . ∧ attκ(Mn). A
similar transformation occurs when attκ(f(M1, . . . ,Mn)) is the conclusion of a clause, i.e.
H −→ attκ(f(M1, . . . ,Mn)). In such a case, the clause will be transformed in n clauses
H −→ attκ(M1), . . . , H −→ attκ(Mn). In term of traces, this transformation intuitively cor-
responds to forcing the attacker to always decompose terms with data constructor function
symbols as root (to obtain the projection) and then recomposing the term itself (so that
f(M1, . . . ,Mn) is built from M1, . . . ,Mn). To describe these traces, we define three relations
M
==⇒

dr
, M

==⇒
d,k

and M
==⇒

r
on configurations that describe the deconstruction and reconstruction

of terms with data constructor function symbols. Intuitively, the relation M
==⇒

r
applies con-

structor symbols, the relation M
==⇒

d,k
deconstructs data always following the k-th component,

while M
==⇒

dr
corresponds to reconstructing data once they have been deconstructed. To ease

the reading, when T [τ] −→i T [τ + 1] by application of the rule I-App with the function f/n

on terms M1, . . . ,Mn, we will write T [τ]
I-App(f,M1,...,Mn)−−−−−−−−−−−−→i T [τ + 1].

Moreover, we denote data(T, τ) the set of terms that have already been deconstructed
/ reconstructed up to the step τ . Formally, if κ is the phase of T [τ] then M ∈ data(T, τ)
if and only if there exists τ ′ ≤ τ and T [τ ′] = κ, ρ,P, T ,A,Λ such that M ∈ A and if

M = f(M1, . . . ,Mm) and f ∈ Fdata then T [τ ′ − 1]
I-App(f,M1,...,Mm)−−−−−−−−−−−−→i T [τ ′].

Definition 11. We define the relations M
==⇒

dr
, M

==⇒
d,k

and M
==⇒

r
on configurations as follows:

For all T [τ] = n, ρ,P, T ,A,Λ, for all f/m ∈ Fdata, for all terms M,M1, . . . ,Mm

Reconstruction relation M
==⇒

r
:

T [τ]
M
==⇒

r
T [τ] if M ∈ data(T, τ)

T [τ]
f(M1,...,Mm)
========⇒

r
T [τ + 1] if M1, . . . ,Mm ∈ data(T, τ) and T [τ]

I-App(f,M1,...,Mm)−−−−−−−−−−−−→i T [τ + 1]

Deconstruction relation M
==⇒

d,k
:

T [τ]
f(M1,...,Mm)
========⇒

d,k
T [τ] if Mk ∈ data(T, τ)

T [τ]
f(M1,...,Mm)
========⇒

d,k
T [τ ′] if T [τ]

I-App(πfk ,f(M1,...,Mm))
−−−−−−−−−−−−−−−→i T [τ + 1]

Mk==⇒
dr
T [τ ′]

27

Reconstruction/deconstruction relation M
==⇒

dr
:

T [τ]
M
==⇒

dr
T [τ] if M ∈ data(T, τ)

T [τ]
f(M1,...,Mm)
========⇒

dr
T [τm + 1]

if T [τ]
M
==⇒

d,1
T [τ1]

M
==⇒

d,2
. . .

M
==⇒

d,m
T [τm]

M
==⇒

r
T [τm + 1] with M = f(M1, . . . ,Mm)

Intuitively, the relation
f(M1,...,Mm)
========⇒

r
represents the reconstruction of f(M1, . . . ,Mm) by

application of the rule I-App with f on M1, . . . ,Mm whereas the relations
f(M1,...,Mm)
========⇒

d,k

represents the deconstruction of f(M1, . . . ,Mm) by application of the k-th projection of f .

The main relation T [τ]
f(M1,...,Mm)
========⇒

dr
T [τ ′] indicates that between the step τ and τ ′, the trace

first deconstructs the term f(M1, . . . ,Mm) (i.e. T [τ0]
f(M1,...,Mm)
========⇒

d,1
T [τ1]

f(M1,...,Mm)
========⇒

d,2

. . .
f(M1,...,Mm)
========⇒

d,m
T [τm]) and then reconstructs it (i.e. T [τm]

f(M1,...,Mm)
========⇒

r
T [τm + 1]).

Note that a configuration T [τ] is in relation with itself w.r.t. to the relation M
==⇒

r
and M

==⇒
dr

when M have already been reconstructed, i.e. M ∈ data(T, τ). A similar property holds for

the relation
f(M1,...,Mm)
========⇒

d,k
but focusing on the k-th projection, i.e. Mk ∈ data(T, τ).

Finally, note that the relation
f(M1,...,Mm)
========⇒

d,k
and

f(M1,...,Mm)
========⇒

dr
are mutually recursive

in order to handle terms with nested data constructor symbols. For instance, when M1 also

contains a data constructor symbol as root then T [τ]
f(M1,...,Mm)
========⇒

d,1
T [τ ′] indicates that

between the steps τ and τ ′, the trace first apply πf1 (i.e. T [τ]
I-App(πfk ,f(M1,...,Mm))
−−−−−−−−−−−−−−−→i T [τ + 1])

and then deconstruct/reconstruct the termM1 itself (i.e. T [τ +1]
M1==⇒

dr
T [τ ′]). As previously

mentioned, when M1 is not a data constructor symbol, T [τ + 1]
M1==⇒

dr
T [τ ′] in fact implies

τ + 1 = τ ′ meaning that no rule were additionally applied.

Definition 12. We say that a trace T is data compliant when for all T [τ] = κ, ρ,P, T ,A,Λ,

1. for all M , if τ is the smallest step such that M ∈ A \ data(T, τ) then T [τ]
M
==⇒

dr
T [τ ′].

2. if T [τ−1] −→i T [τ] by the rule I-Phase and A = {Mi}mi=1 then T [τ]
M1==⇒

r
. . .

Mm===⇒
r
T [τ ′]

3. if k is the greatest integer occurring in T then T [0]
I-App(0)−−−−−→i

1
=⇒

r
. . .

k
=⇒

r
T [k + 1]

As previously mentioned, we enforce looking at traces where the attacker automatically
deconstructs a term with a data constructor and then reconstructs it. The first item of
Definition 12 focuses on cases where a term M is known to the attacker for the first time.
In such a case, we only look at the trace that applies a complete sequence of deconstruc-
tion/reconstruction for the term M (i.e. T [τ]

M
==⇒

dr
T [τ ′]). The second item of Definition 12

28

focuses on phase transition: when the phase of the configuration changes, we require that the
trace reconstructs all terms in the attacker knowledge (i.e. T [τ]

M1==⇒
r
. . .

Mm===⇒
r
T [τ ′]). Note

that it is not necessary to require some deconstruction steps as item 1 of Definition 12 ensures
that projections of a term already occur in the attacker knowledge. Finally, the third item
of Definition 12 enforces the attacker to "know" the natural numbers that occur in the trace
from the beginning. This is possible since both zero and succ are public functions and succ is
a data constructor function symbol.

Example 11. Consider the process P = out(c, f(a, b)); out(c, d) where f is a data constructor.
Let ρ = {a 7→ a[]; b 7→ b[]; c 7→ c[]} and let C = ρ, P, {c} be an initial instrumented config-
uration. In the following, we provide some examples of data compliant traces and non-data
compliant traces. For simplicity sake, we only describe the multiset of instrumented of process
and the set of terms known by the attacker in instrumented configuration, the other elements
remaining unchanged.

• The trace C msg(c[],f(a[],b[]))−−−−−−−−−−→i {{(out(c, d))}}, {c, f(a, b)} is not data compliant

• The following trace T is data compliant:

C msg(c[],f(a[],b[]))−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b)}
I-App(πf1 ,f(a,b))
−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b), a}
I-App(πf2 ,f(a,b))
−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b), a, b}

I-App(f,a,b)−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b), a, b}

In particular, we have T [1]
f(a,b)
====⇒

dr
T [4] with T [1]

f(a,b)
====⇒

d,1
T [2]

f(a,b)
====⇒

d,2
T [3]

f(a,b)
====⇒

r

T [4]. Note that even though the last step does not change the configuration, it is still a
required step for the trace to be data-compliant. The second and third steps deconstruct
f(a, b) by applying the projection πf1 and πf2 while the fourth step reconstructs the term
f(a, b).

• The following trace is not data compliant as item 1 in Definition 12 requires that the
deconstruction/reconstruction of terms should not interleaved with other rule applica-
tions:

C msg(c[],f(a[],b[]))−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b)}
I-App(πf1 ,f(a,b))
−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b), a}
I-App(πf2 ,f(a,b))
−−−−−−−−−−→i {{(out(c, d), ∅, ∅)}}, {c, f(a, b), a, b}

msg(c[],d[]))−−−−−−−→i {{(0, ∅, ∅)}}, {c, f(a, b), a, b, d}
I-App(f,a,b)−−−−−−−→i {{(0, ∅, ∅)}}, {c, f(a, b), a, b, d}

• Consider the initial instrumented configuration C′ = ρ,P, {c} with P = {{out(c, f(f(a, 2), b)}}.

29

Let P∅ = {{(0, ∅, ∅)}}. The following trace T is data compliant:

C′ I-App(0)−−−−−→i P, {c, 0}
I-App(succ,0)−−−−−−−−→i P, {c, 0, 1}
I-App(succ,1)−−−−−−−−→i P, {c, 0, 1, 2}

msg(c[],f(f(a[],2),b[]))−−−−−−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b)}
I-App(πf1 ,f(f(a,2),b))
−−−−−−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b), f(a, 2)}

I-App(πf1 ,f(a,2))
−−−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b), f(a, 2), a}

I-App(f,a,2)−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b), f(a, 2), a}
I-App(πf2 ,f(f(a,2),b))
−−−−−−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b), f(a, 2), a, b}

I-App(f,f(a,2),b)−−−−−−−−−−→i P∅, {c, 0, 1, 2, f(f(a, 2), b), f(a, 2), a, b}

In particular, for the natural numbers 1, 2 and 3, we have T [1]
1
=⇒

dr
T [1], T [2]

2
=⇒

dr

T [2] and T [3]
3
=⇒

dr
T [3]. Furthermore, the steps 4 to 9 is are the deconstruction /

reconstruction of f(f(a, 2), b) (i.e. T [4]
f(f(a,2),b)
=======⇒

dr
T [9]) with T [5]

f(a,2)
====⇒

dr
T [7] and

T [8]
b
=⇒

dr
T [8]. Note that the first steps of the trace consist of generating all integers up

to 2 in order to satisfy item 2 of Definition 12. Moreover, notice that data compliance
does not require to apply all projections on a data constructor. In particular, we did not

apply the step
I-App(πf2 ,f(a,2))
−−−−−−−−−−→i to obtain 2 since it was already in the attacker knowledge,

i.e. the step
I-App(πf2 ,f(a,2))
−−−−−−−−−−→i was not required in order to apply

I-App(f,a,2)−−−−−−−−→i. I

3.2.2 Internal communications

In the instrumented semantics, the rule I-I/O represents internal communication between
two honest processes. When proving a secrecy query, it is well known that such a rule can be
ignored when the communication is on a public channel, i.e. we only need to consider traces
where all communications on public channels go through the attacker. This is however not
the case for general correspondence queries specially when there is an attacker predicate in
the conclusion of the query. Indeed, by forcing the communications on public channels to go
through the attacker, we potentially increase the knowledge of the attacker thus influencing
the satisfaction of attacker facts in the conclusion of a query.

We define a trace to be IO-κ-compliant if internal communications are considered only up
to phase κ− 1.

Definition 13. Let C0 = ρ0, P0,A0 be an initial instrumented configuration. We say that
T ∈ trace(CI ,−→i) is IO-κ-compliant when T is data compliant and for all steps τ , by denoting
T [τ] = κ′, ρ,P, T ,A,Λ, we have:

• if T [τ − 1]
msg(N,M)−−−−−−→i T [τ] by the rule I-I/O then κ′ < κ or N 6∈ A0

• if T [τ − 1]
msg(N,M)−−−−−−→i T [τ] by the rule I-Out, κ′ ≥ κ and N ∈ A0 then there exists τ ′

such that T [τ]
M
==⇒

dr
T [τ ′] and T [τ ′]

msg(N,M)−−−−−−→i T [τ ′ + 1] by the rule I-Msg.

30

Given an initial instrumented configuration C, we will denote by traceκIO(C,−→i) the set of
IO-κ-compliant traces in trace(C,−→i). Given a query % of the form

∧n
i=1 Fi ⇒ ψ, we say that %

is IO-κ-compliant (resp. fully IO-κ-compliant) when for all attacker facts attκ′(M) occurring
in ψ (resp. ψ and F1, . . . , Fn), we have κ′ < κ.

Intuitively, if a query is IO-κ-compliant, that is, it does not prove attacker facts attκ′(M)
with κ′ ≥ κ′, then we need to consider internal communications only up to phase κ−1, that is,
it is sufficient to consider IO-κ-compliant traces. Note that the second item of the definition

is due to T being data compliant. After the transition T [τ − 1]
msg(N,M)−−−−−−→i T [τ] by the rule

I-Out, the attacker knows M but M has not necessarily be de/recomposed. Thus, to ensure
that msgκ′(N,M) can be obtained with N and M after their recomposition, we enforce an
application of the rule I-Msg.

Example 12. Consider the process P = new a; out(c, a) | ino(c, x), ρ = {c 7→ c[]}, A = {c}
and the initial instrumented configuration C = ρ, P,A. Consider the query % = msg0(c, x)⇒
att0(x). Due to a possible internal communication, this query does not hold on P , as witnessed
by the following trace T (for readability, we only showed relevant information in the trace).

C −→i 0, ρ[a′ 7→ a[]], {{(out(c, a′) | ino(c, x), ∅, ∅)}},A
−→i 0, ρ[a′ 7→ a[]], {{(out(c, a′), ∅, ∅), (ino(c, x), ∅, ∅)}},A

msg(c[],a[])−−−−−−−→i 0, ρ[a′ 7→ a[]], {{(0, ∅, ∅) | (0, [o], [a[]]}},A

However, if we prevent the application of the internal communication rule I/O on channel
c, i.e. we only look at IO-0-compliant traces, then the query would hold. Note that T 6∈
trace0

IO(C,−→i) but T ∈ trace1
IO(C,−→i) and % is IO-1-compliant.

Note that the presence of the fact msg0(c, x) in the premise of the query % is not mandatory.
We can make small modifications on the query and the process that illustrate that only the
presence of the fact atti matters: Consider the process P1 = new a; out(c, a); event(A(a)) |
ino(c, x) and the query %1 = (event(A(x)) ⇒ att0(x)). Once again, %1 does not hold on P1

but %1 would hold on P1 when only looking at IO-0-compliant traces. I

3.2.3 Soundness of our restrictions

We previously defined the restricted set of traces we will consider when proving a query, that
are the IO-κ-compliant traces. Thus, before showing the soundness, it remains to define the
universal satisfaction relation we will consider. `κIO is defined similarly to `i except that we
do not wish to consider the facts that can be introduced by the 2nd bullet of Definition 13.

Definition 14. Let κ ∈ N. We define the satisfaction relation for IO-κ-compliant traces,
denoted `κIO, as follows: for all T ∈ traceκIO(C,−→i), for all steps τ of T , for all facts F ,
T, τ `κIO F if and only if T [τ] = κ′, ρ,P, T ,A,Λ and

• if F = msgκ′′(Nρ,Mρ) and T [τ − 1]
msg(Nρ,Mρ)−−−−−−−−→i T [τ] by the rule I-Out then κ′′ = κ′

and either κ′ < κ or N 6∈ A0; and

• if F = attκ′′(Mρ) then κ′′ = κ′ and M ∈ data(T, τ); and

• if F = tableκ′′(tbl(M1, . . . ,Mm)ρ) then κ′′ = κ′ and tbl(M1, . . . ,Mm) ∈ T ; and

• T, τ `i F otherwise.

31

The following lemma shows the soundness of our restrictions to IO-κ-compliant traces.

Lemma 8. Let CI = ρ, P,A be an initial instrumented configuration. Let κ ∈ N. Let % be an
IO-κ-compliant correspondence query and R be a set of fully IO-κ-compliant restrictions such
that names(%,R) ⊆ dom(ρ).

We have (`i, trace(CI ,−→i)|R) |= % if and only if (`κIO,`i, traceκIO(CI ,−→i)|R) |= %.

3.2.4 Restrictions on bitraces

Similar restrictions can be defined for correspondence queries on bitraces. Since we do not
consider injective events for correspondence queries on bitraces, we can keep Definition 10 as
it is.

Data compliance To define data compliant bitraces, we need to redefine the set data(T, τ)
and the relation =⇒

dr
, =⇒

d,k
and =⇒

r
to consider biterms.

We redefine data(T, τ) as a set of pair (M,M ′) such that (M,M ′) ∈ data(T, τ) if and
only if there exists τ ′ ≤ τ , T [τ ′] = n, ρ,P, T ,A,Λ and M ′′ ∈ A such that fst(M ′′) = M ,
snd(M ′′) = M ′ and if M = f(M1, . . . ,Mm), M ′ = f(M ′1, . . . ,M

′
m) and f ∈ Fdata then

T [τ ′ − 1]
I-App(f,diff[M1,M ′

1],...,diff[Mm,M ′
m])

−−−−−−−−−−−−−−−−−−−−−−−→i′ T [τ ′].
Similarly to the set data(T, τ), the de/reconstruction relations will depend on pair of

terms, i.e. M,M ′
====⇒

dr
, M,M ′

====⇒
d,k

and M,M ′
====⇒

r
. The main difference comes when M and M ′ do

not have the same data constructor symbol as root. Although this case is not relevant for
correspondence queries since such a trace will not be convergent and a correspondence query
only considers convergent traces, it is important to preserve traces that are not convergent to
prove equivalence. Thus, for all traces T , for all steps τ , we additionally define T [τ]

M,M ′
====⇒

dr

T [τ] (resp. T [τ]
M,M ′
====⇒

r
T [τ], T [τ]

M,M ′
====⇒

d,k
T [τ]) when root(M) 6= root(M ′) and either

root(M) ∈ Fdata or root(M ′) ∈ Fdata.
The rest of the definition is adapted as expected. For instance, T [τ]

M,M ′
====⇒

r
T [τ] if

(M,M ′) ∈ data(T, τ); and T [τ]
f(M1,...,Mm),f(M ′

1,...,M
′
m)

=================⇒
r
T [τ+1] if (M1,M

′
1), . . . , (Mm,M

′
m) ∈

data(T, τ) and T [τ]
I-App(f,diff[M1,M ′

1],...,diff[Mm,M ′
m])

−−−−−−−−−−−−−−−−−−−−−−−→i′ T [τ + 1].
Similarly, Definition 12 is adapted as expected.

IO-κ-compliance No change is required for the notion of IO-κ-compliant, then it only
remains to redefine the universal satisfaction relation `κIO for bifacts. Such a relation is
denoted `κIO′ and is defined as follows: T, τ `κIO′ F if and only if T [τ] = κ′, ρ,P, T ,A,Λ and:

• if F = msg′κ′(N1,M1, N2,M2)ρ and T [τ − 1]
msg(Nρ,Mρ)−−−−−−−−→i T [τ] by the rule I-Out then

fst(N) = N1, snd(N) = N2, fst(M) = M1, snd(M) = M2 and either κ′ < κ or N 6∈ A0;
and

• if F = att′κ′(M1,M2)ρ then (M1,M2) ∈ data(T, τ); and

• if F = table′κ′(tbl(M1, . . . ,Mn), tbl(M ′1, . . . ,M
′
n))ρ then there exists M ∈ T such that

fst(M) = tbl(M1, . . . ,Mn) and snd(M) = tbl(M ′1, . . . ,M
′
n); and

32

• T, τ `i F otherwise.

With these new definitions, we obtain the following two lemmas:

Lemma 9. Let CI = ρ, P,A be an initial instrumented biconfiguration. Let κ ∈ N. Let R be
a set of fully IO-κ-compliant restrictions such that names(R) ⊆ dom(ρ).

We have trace(CI ,−→i′)|R↓↑i if and only if traceκIO(CI ,−→i′)|R↓↑i.

Lemma 10. Let CI = ρ, P,A be an initial instrumented biconfiguration. Let κ ∈ N. Let % be
an IO-κ-compliant correspondence query and R be a set of fully IO-κ-compliant restrictions
such that names(%,R) ⊆ dom(ρ). We have:

(`i′ , trace(CI ,−→i′)|R) |= % iff (`κIO′ ,`i′ , traceκIO(CI ,−→i′)|R) |= %

3.3 Proving correspondence queries by induction

One of the main new features of ProVerif is its ability to prove a correspondence query
by induction. This feature applies to all correspondence queries but will be most useful for
non-injective queries.

Consider a non-injective IO-κ-compliant correspondence query % = (
∧n
i=1 Fi ⇒ ψ). Since

the query is non-injective, the satisfiability of a correspondence query w.r.t. data compliant
steps can be simplified as follows:

(`κIO,`i,S) |= % if and only if for all T ∈ S, for all tuples of steps τ̃ = (τ1, . . . , τn),
there exists an annotated query conclusion Ψ w.r.t. (n,m) such that:

• m = maxstep(T), Ψ = ψ; and

• for all σ ∈ Σ, if T, τi `κIO Fiσ for i = 1 . . . n then there exists σ′ such that
Fiσ = Fiσ

′ for i = 1 . . . n and (`i, T, (τ̃ , σ)) |= Ψσ′.

Noticeably, this definition ignores the second and third items of Definition 4 since there
is no injective event. It also inverses the quantification order between "for all tuples of steps
τ̃ = (τ1, . . . , τn)" and "there exists an annotated query conclusion Ψ . . . ". In the presence of
injective events, it is imperative that the existential quantification over the annotated query
conclusion occurs before the universal quantification over the steps τ̃ . This is due to the fact
that we need to guarantee in the second item of Definition 4 that the partial functions µ
occurring in the annotated query conclusion are injective w.r.t. the injective events.

Formally, to prove that the two definitions are equivalent in the case of non-injective
correspondence queries, we only need to focus on showing that the simplified definition implies
Definition 4 (the converse being trivial). If we denote by Ψτ̃ the existential annotated query
conclusion associated to a tuple τ̃ , we can build a new annotated query conclusion Ψ′τ̃ where
each partial function µ in Ψ′τ̃ is obtained by restricting the domain of the corresponding
partial function from Ψτ̃ to {(τ̃ , σ) | σ ∈ Sσ}, i.e. µ is defined only on tuples (τ̃ , σ) for any
σ. Then, we can build an annotated formula Ψ, that satisfies Definition 4, by composing the
corresponding partial functions in all Ψ′τ̃ , for all τ̃ .

We can therefore see the simplified definition as a property of the form: for all T ∈ S, for
all tuples of steps τ̃ = (τ1, . . . , τn), P%(T, τ̃). ProVerif will thus inductively prove P%(T, τ̃)

33

by considering the strict order relation <ind defined as: (T, (τ1, . . . , τn)) <ind (T ′, (τ ′1, . . . , τ
′
n))

if and only if

|T | < |T ′| or (|T | = |T ′| and {{τ1, . . . , τn}} <m {{τ ′1, . . . , τ ′n}})

where <m is the multiset ordering on natural numbers.
Internally, ProVerif will encode the inductive hypothesis as a lemma and will apply

it during the saturation and verification procedure only when the strict order is satisfied
(contrary to normal lemmas that are always applied).

Group of queries In ProVerif, queries can be declared separately or within groups. In
ProVerif 2.00, the two declaration styles affect mainly the saturation procedure: queries
declared separately will call the saturation procedure for each query whereas the saturation
procedure will be called only once per group of queries. Groups of queries now also influence
the inductive proof of queries: if a group of queries, say %1, . . . , %k, having n1, . . . , nk facts as
premises respectively, has to be proved by induction then the induction hypothesis refers to
all queries in the group instead of each individual query. This feature allows to prove queries
by mutual induction.

Formally, ProVerif will inductively prove that for all T ∈ S, for all τ̃ ∈ Nn, for all j ≤ k,
for all (T ′, τ̃ ′) <ind (T, τ̃), P%j (T ′, τ̃ ′).

Nested queries As mentioned in Section 2.4, the conclusion of a ProVerif lemma should
only contain non-injective events or generic predicates. Thus if the query % contains nested
queries, we cannot directly encode the inductive hypothesis as a lemma. We can however
weaken it so that it can be become a lemma. In particular, we replace any nested condition
with a conjunction.

Example 13. The query event(A) ⇒ event(B) event(C) implies the query event(A) ⇒
event(B) ∧ event(C). I

Thus given a query %, if we denote by %s the simplified query obtained from % by replacing
all nested conditions by conjunctions then ProVerif will try to prove that for all T ∈ S, for
all τ̃ ∈ Nn, P%(T, τ̃) assuming that for all (T ′, τ̃ ′) <ind (T, τ̃), P%s(T ′, τ̃ ′) holds.

Injective queries Similarly to nested queries, we cannot encode directly the injective query
into a lemma. Thus, we weaken the inductive hypothesis by replacing any injective events
with >, i.e. true.

Example 14. The query inj1-event(A)⇒ inj2-event(B)∧event(C) implies the query event(A)⇒
event(C). I

Intuitively, the weakened inductive hypothesis only focuses on non injective events as they
do not impact the second and third items of Definition 4. Note that in principle, we could
replace injective events in the query with events but since we lose all "injectivity" information
on the events, they would not help proving the query. In all generality, from a correspondence
query %, ProVerif generates a lemma %ind from % by replacing

• all nested conditions by conjunctions

• all facts different from non-injective events in the conclusion of % by >.

34

The inductive hypothesis that ProVerif will consider is denoted by IH%ind and is defined
as follows.

Definition 15. Let % be a IO-κ-compliant lemma of the form
∧n
i=1 ⇒ ψ. For all traces T ,

for all tuples of steps τ̃ = (τ1, . . . , τn), IH%(T, τ̃) holds if and only if there exists an annotated
query conclusion Ψ w.r.t. (n,m) such that:

• m = maxstep(T), Ψ = ψ; and

• for all substitutions σ, if T, τi `κIO Fiσ for i = 1 . . . n then there exists σ′ such that
Fiσ = Fiσ

′ for i = 1 . . . n and (`i, T, (τ̃ , σ)) |= Ψσ′.

Remark 4. For some queries %, the inductive lemma %ind may not be useful in particular when
the conclusion %ind became > due to injective events. For example, if % = (inj1-event(A) ⇒
inj2-event(B)) then %ind = (event(A) ⇒ >) which is always true, hence not useful. Actually,
other definitions of %ind could be considered, provided that % entails %ind. I

4 Horn clauses generation

As previously mentioned, ProVerif generates from a configuration a set of initial clauses.
Moreover, it also generates some Horn clauses to model the behavior of an attacker. We will
detail in this section how these clauses are generated. This paper reuses many of the clauses
generated by ProVerif described in [BAF08, Bla09, Bla16, CB13].

4.1 Extending the rewrite rules

A conditional rewrite rule is a classic rewrite rule h(U1, . . . , Un)→ U on which a conditional
formula φ is added, denoted h(U1, . . . , Un) → U || φ. Note that the formula is always of
the form

∧n
i=1Mi ≥ Ni ∧

∧n′

i′=1 ¬nat(M ′i) ∧
∧n′′

i′′=1 nat(M
′′
i) ∧

∧n′′′

i′′′=1 ∀x̃i.M ′′′i 6= N ′′′i where x̃
stands for a sequence of variables. These constraints will be handled by specific rules in the
saturation and verification procedure.

Example 15. Assume that enc/2 ∈ Fc and consider the destructor dec/2 ∈ Fd defined by
the list of rewrite rules def(dec) = [dec(enc(x, y), y)→ x]. ProVerif will transform this list
of rewrite rules into the following set of conditional rewrite rules:

dec(enc(x, y), y)→ x
dec(x, y)→ fail || ∀z.x 6= enc(z, y)
dec(fail, u)→ fail
dec(x, fail)→ fail

where x, y are variables and u is a may-fail variable. I

Example 16. ProVerif associates the following conditional rewrite rules to the function
geq/2 on natural numbers:

geq(x, y)→ true || x ≥ y
geq(x, y)→ false || y ≥ x+ 1
geq(x, y)→ fail || ¬nat(x)
geq(x, y)→ fail || ¬nat(y)
geq(fail, u)→ fail
geq(x, fail)→ fail

35

I

Note that ProVerif also associates conditional rewrite rules to constructor function sym-
bols as follows: for all f/n ∈ Fc,

f(x1, . . . , xn)→ f(x1, . . . , xn)
f(fail, u2, . . . , un)→ fail
f(x1, fail, . . . , un)→ fail
. . .
f(x1, . . . , xn−1, fail)→ fail

We refer the reader to [CB13] for more details on conditional rewrite rules. In the rest of this
paper, we denote def(g) the set of conditional rewrite rules associated to the function symbol
g.

To translate the protocol into clauses, we also need to define evaluation on open terms, as
a relation D ⇓′ (U, σ, φ), where σ collects instantiations of D obtained by unification and φ
collects the conditional formulae when applying a destructor function symbol. This relation
is defined as follows:

U ⇓′ (U, ∅,>) if U is a may-fail term

g(D1, . . . , Dn) ⇓′ (V σu, σ′σu, φ′σu ∧ φσu)
if (D1, . . . , Dn) ⇓′ ((U1, . . . , Un), σ′, φ′),
g(V1, . . . , Vn)→ V || φ ∈ def(g) and
σu is the most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ⇓′ ((U1σn, . . . , Un−1σn, Un), σσn, φσn ∧ φn)
if (D1, . . . , Dn−1) ⇓′ ((U1, . . . , Un−1), σ, φ) and Dnσ ⇓′ (Un, σn, φn)

The most general unifier of may-fail terms U and V is defined as: (i) the standard most
general unifier when U and V are in fact both terms; (ii) the substitution {U 7→ V } when U
is a may-fail variable; (iii) the identity substitution when U = V = fail. Note that there is no
unifier between a term M and fail.

4.2 Clauses generated for correspondence queries

4.2.1 Clauses for the attacker

Below we display the clauses modeling the capabilities of the attacker. They are adapted
from [Bla09, CB13]. We consider an initial instrumented configuration C0 = ρ0, P0,A0. More-
over, we assume that the maximal phase in P is κmax. Finally, we consider a special name,
denoted b0, that is assumed not to appear in C0. This name will be used to model all the fresh
names that an attacker can create.

36

For all κ ∈ {0, . . . , κmax},
For all a ∈ A0, attκ(a[]) (RInit)
attκ(b0[i]) (RGen)
attκ(fail) (RFail)

For all functions h, for all h(U1, . . . , Un)→ U || φ in def(h)

attκ(U1) ∧ . . . ∧ attκ(Un) ∧ φ −→ attκ(U)
(Rf)

msgκ(x, y) ∧ attκ(x) −→ attκ(y) (Rl)
attκ(x) ∧ attκ(y) −→ msgκ(x, y) (Rs)
attκ(x) −→ attκ+1(x) (Rap)
tableκ(x) −→ tableκ+1(x) (Rtp)

We will denote CA(C0) = {(RInit), (RGen), (RFail), (Rf), (Rl), (Rs), (Rap), (Rtp)}.

4.2.2 Clauses for the protocol

As for the attacker clauses, the clauses for the protocol follow closely the ones described
in [Bla09, Bla16], except for how to deal with injective events. Once again, we consider
an initial instrumented configuration C0 = ρ0, P0,A0. In Section 3, we showed that when
the query is IO-κ-compliant, we can restrict the search space to IO-compliant traces (see
Lemma 8). This property is also reflected in the generation of clauses. Hence we also introduce
an integer κio representing the phase we consider for IO compliance.

The clauses modeling the protocol, denoted CP(C0, κio), are generated by the translation
[[P,O, I]]κHρ, displayed in Figure 6 where κio is the integer used in the translation of output
and input case. Note that in Figure 6, P,O and I are the same kind of elements as in
an instrumented configuration, that are a process, a list of labels and a list of patterns.
n represents the current phase. H is a conjunction of facts and formulas and ρ is a term
substitution. Then, we define CP(C0, κio) as [[P0, ∅, ∅]]0>ρ0.

The transformation of events generates two new type of predicates of arity 2: m-event and
s-event respectively called may-event and sure-event. Intuitively, may-events can only occur
in the conclusion of a clause whereas sure-events only occur in the hypotheses. In practice,
this separation ensures that events are not "resolved" during the saturation procedure, i.e.
once they appear in the hypotheses of a clause, they are preserved through the resolution rule.

For the rest of this paper, we extend the satisfaction relation `i (and subsequently the
relation `κIO) for the predicates m-event and s-event as follows: T, τ `i m-event(o, ev) iff
T, τ `i s-event(o, ev) iff T, τ `i event(o, ev).

4.2.3 Soundness

Derivations Since our notion of Horn clauses differs from actual Horn clauses due to the
presence of disequalities and inequalities, we need to define the notion of derivation of a fact
as well as the notion of subsumption of clauses. Due to the conditional formulas potentially
occurring in def(h) with h ∈ Fd, our clauses are of the form φ ∧

∧m
j=1 Fi → C where φ =∧n

i=1Mi opi Ni ∧
∧n′

i′=1 pi′(M
′
i) ∧

∧n′′

i′′=1 ∀x̃i.M ′′i 6= N ′′i and F1, . . . , Fn, C are facts with opi ∈
{≥,=}, pi′ ∈ {nat ,¬nat}. We call φ a constraint formula. Thus, from now on, when we

37

[[0,O, I]]κHρ = ∅
[[P | Q,O, I]]κHρ = [[P,O, I]]κHρ ∪ [[Q,O, I]]κHρ
[[!oP,O, I]]κHρ = [[P, (O, o), (I, i)]]κHρ where i is a fresh variable session identifier
[[new a;P,O, I]]κHρ = [[P,O, I]]κH(ρ[a 7→ a[I]])

[[ino(M,x);P,O, I]]κHρ = [[P, (O, o), (I, x′)]]κ(H ∧msgκ(Mρ, x′))(ρ[x 7→ x′])
if (M 6∈ A0 or n < nIO) and x′ is a fresh variable

[[ino(M,x);P,O, I]]κHρ = [[P, (O, o), (I, x′)]]κ(H ∧ attκ(x′))(ρ[x 7→ x′])
if M ∈ A0, n ≥ nIO and x′ is a fresh variable

[[out(M,N);P,O, I]]κHρ = [[P,O, I]]κHρ ∪ {H O,I−−→ msgκ(Mρ,Nρ)} if M 6∈ A0 or κ < κio

[[out(M,N);P,O, I]]κHρ = [[P,O, I]]κHρ ∪ {H O,I−−→ attκ(Nρ)} if M ∈ A0 and κ ≥ κio
[[let x = D in P else Q,O, I]]κHρ =⋃
{[[P,O, Iσ]]κ(Hσ ∧ φ)(ρσ[x 7→M]) | Dρ ⇓′ (M,σ, φ)}
∪
⋃
{[[Q,O, Iσ]]κ(Hσ ∧ φ)(ρσ) | Dρ ⇓′ (fail, σ, φ)}

[[evento(ev);P,O, I]]κHρ =

[[P,O, I]]κ (H ∧ s-event(o[I], evρ)) ρ ∪ {H O,I−−→ m-event(o[I], evρ)}
[[phase κ′;P,O, I]]κHρ = [[P,O, I]]κ′Hρ if κ′ > κ

[[phase κ′;P,O, I]]κHρ = ∅ if κ′ ≤ κ

[[insert (tbl(M1, . . . ,Mm));P,O, I]]κHρ = [[P,O, I]]κHρ ∪ {H O,I−−→ tablen(tbl(M1, . . . ,Mm)ρ)}
[[geto T suchthat D in P else Q,O, I]]κHρ =
{[[P, (O, o), (Iσ, Tρ′σ)]]κ(Hσ ∧ tableκ(Tρ′σ) ∧ φ)(ρρ′σ) | equals(Dρρ′, true) ⇓′ (true, σ, φ)}
∪[[Q,O, I]]κHρ
where T = tbl(x1, . . . , xm), ρ′ = [xi 7→ x′i]

m
i=1 and x′i fresh variables.

Figure 6: Generation of clauses for correspondence queries

describe a clause in generality, we will write H → C but we will write H ∧ φ → C with H
being a conjunction of facts and φ being a constraint formula when we want to isolate it from
the rest of the hypotheses.

Given two constraint formulas φ1 and φ2, we denote by φ1 |= φ2 when for all substitutions
σ, if `i φ1σ then `i φ2σ.

Remark 5. In the implementation, the formulas do not contain equalities as they are directly
applied to the clauses. However, for the sake of readability, we make the equalities apparent in
this paper as it reduces the number of transformation rules in later sections and makes them
more compact. I

We define the notion of subsumption as follows.

Definition 16. Let H1∧φ1 → C1 and H2∧φ2 → C2 be two clauses. We say that H1∧φ1 → C1

subsumes H2∧φ2 → C2, denoted (H1∧φ1 → C1) w (H2∧φ2 → C2), when there exists σ such
that (i) either C1σ = C2 or C1 = bad (ii) H1σ ⊆ H2 (where H1 and H2 are seen as multiset
of facts and ⊆ is the multiset inclusion) (iii) φ2 |= φ1σ.

We can now define the notion of derivation and satisfaction of a derivation w.r.t. a trace.

38

Definition 17. Let C be a set of clauses. Let F be a closed fact and a step τ . A derivation
D of F at step τ from C is a finite tree defined as follows:

• its nodes (except the root) are labeled by clauses labels (which may be empty or the pair
O, I) and by clauses R ∈ C.

• its edges are labeled by ground facts and by a step.

• if the tree contains a node labeled by R with one incoming edge labeled by F0 and n
outgoing edges labeled by F1, . . . , Fn then R w F1 ∧ . . . ∧ Fn → F0.

• the root has one outgoing edge, labeled by F and τ .

The previous definition of derivation is an extension of [Bla09, Definition 17]. We only add
in our definition the steps of the trace in which the facts should be satisfied. The presence
of the trace steps in the derivation is particularly relevant for proving queries by induction
and for proving nested queries. Note that in [Bla09], nested queries can already be proved
without steps in derivations. However, in this paper, we use the steps, required for proofs by
induction, to provide an improved verification algorithm for nested queries.

Definition 18. Let κio ∈ N. Let D be a derivation of F at step τ . Let Sp be a set of
predicates. We say that a IO-κio-compliant trace T satisfies a derivation D w.r.t. Sp, denoted
T,Sp, κio ` D, when for all nodes η of D, if F0, τ0 is the label of the incoming edge of η then

1. if η is labeled with (Rl) then the outgoing edges of η are labeled msgκ(N,M), τ ′ and
attκ(N), τ ′′ for some κ,N,M, τ ′, τ ′′ such that τ ′ ≤ τ0 and if attκ ∈ Sp then τ ′′ < τ0 else
τ ′′ ≤ τ0.

2. if η is not labeled with (Rl), then for all outgoing edges of η labeled F ′, τ ′,

• pred(F ′) 6∈ Sp implies τ ′ ≤ τ0

• pred(F ′) ∈ Sp implies τ ′ < τ0

3. if η is labeled with (O, I) then there exists τ ≤ τ0 such that T [τ] = κ, ρ,P, T ,A,Λ and
(P,O, I) ∈ P.

4. if F0 = attκ(f(M1, . . . ,Mm)) with f ∈ Fdata then

• either R is the clause attκ(x1)∧ . . .∧attκ(xm) −→ attκ(f(x1, . . . , xm)) and if attκ ∈
Sp then T, τ0 `κioIO F0;

• or η is not the root and the node η′ connected to the incoming edge of η is labeled
with the clause attκ(f(x1, . . . , xm)) −→ attκ(xj) for some j and if attκ ∈ Sp then
f(M1, . . . ,Mm) ∈ A where T [τ0] = κ, ρ,P, T ,A,Λ;

else pred(F0) ∈ Sp implies T, τ0 `κioIO F0

Intuitively, Sp represents the set of predicates that we need to prove in the correspondence
query. Hence, Item 4 of Definition 18 requires that fact F0 is satisfied at the step τ0 in the
trace T (e.g. pred(F0) ∈ Sp implies T, τ0 `κioIO F0). For all facts that have a predicate not
in Sp, we can be looser on the conditions which allow us to apply more transformations on
these facts during the saturation procedure. Item 4 is a bit more specific when F0 is an

39

attacker fact with a data constructor symbol as root. Typically, either the term has been
de/reconstructed in which case we can require that F0 must satisfied at step τ0, or the term is
being deconstructed at step τ0 (i.e. the term is used as an argument for its projection functions
symbol) in which case we cannot require the satisfaction of F0 since `κioIO require terms in an
attacker predicate to already be reconstructed. Item 2 indicates that facts with a predicate in
Sp must occur strictly before each other (exception in the case of the clause (Rl) as stated in
-Item 1). This condition is necessary to apply the inductive lemma. Finally, Item 3 ensures
that the derivation corresponds to a valid trace w.r.t. to the session identifier and inputs.

Soundness We can now state the link between traces and derivations. Given a trace T ∈
T(−→i), we denote by Ce(T) the set of clauses representing events satisfied in T , i.e. Ce(T) =
{−→ s-event(o, ev) | T, τ `i s-event(o, ev)}.

Theorem 1. Let CI = ρ0, P0,A0 be an initial instrumented configuration. Let Sp be a set of
predicates. Let κio ∈ N.

For all T ∈ traceκioIO (CI ,−→i), for all ground facts F different from a sure-event, for all steps
τ , if T, τ `κioIO F then there exists a derivation D of F at step τ from CA(CI) ∪ CP(CI , κio) ∪
Ce(T) such that T,Sp, κio ` D.

Remark 6. This lemma is very similar to [Bla09, Theorem 1] that states the correctness of
the clauses. However, this theorem only states that F is derivable from the set of generated
clauses whereas we prove that T,Sp, κio ` D. This property is crucial to ensure that we can
apply ProVerif lemmas during the saturation and verification procedure. I

4.3 Clauses generated for equivalence queries and correspondence queries
on bitraces

Similarly to traces, the generation of clauses for bitraces are parametrized by an initial in-
termediate biconfiguration C0 = ρ0, P0,A0 where we assume that the maximal phase in P0 is
κmax.

4.3.1 Clauses for the attacker

The clauses for the attacker are the same as in [CB13] extended with clauses for phases and
tables. The first eight clauses are similar to the clauses for correspondence queries. The
last five clauses allow to test if the convergence is not satisfied: intuitively, the predicate
input′κ(x, y) indicates that an input may be available on x and y for the left and right side
of the process respectively. On other hand, the predicate msg′κ(x, z, y, z′) indicates that an
output may be available on x and y for the left and right side respectively. Therefore, if
the hypotheses of clause (RIBad1’) are satisfied then it implies that the first condition of
definition 6 may be broken.

Similarly, the hypotheses of clauses (RBad1’) and (RBad2’) can only be derivable if the
evaluation of an expression failed on one side of the process but not on the other. In such
case, the second condition of Definition 6 would not be satisfied.

For all κ ∈ {0, . . . , κmax},
For each a ∈ A0, att′κ(a[], a[]) (RInit’)

40

att′κ(b0[i], b0[i]) (RGen’)
att′κ(fail, fail) (RFail’)

For each function h, for all h(U1, . . . , Um)→ U || φ in def(h),
for all h(U ′1, . . . , U

′
m)→ U ′ || φ′ in def(h),

att′κ(U1, U
′
1) ∧ . . . ∧ att′κ(Um, U

′
m) ∧ φ ∧ φ′ −→ att′κ(U,U ′)

(Rf’)

msg′κ(x, y, x′, y′) ∧ att′κ(x, x′) −→ att′κ(y, y′) (Rl’)
att′κ(x, x′) ∧ att′κ(y, y′) −→ msg′κ(x, y, x′, y′) (Rs’)
att′κ(x, y) −→ att′κ+1(x, y) (Rap’)
table′κ(x, y) −→ table′κ+1(x, y) (Rtp’)
att′κ(x, x′) −→ input′κ(x, x′) (RIn’)
input′κ(x, y) ∧msg′κ(x, z, y′, z′) ∧ y 6= y′ −→ bad (RIBad1’)
input′κ(y, x) ∧msg′κ(y′, z, x, z′) ∧ y 6= y′ → bad (RIBad2’)
att′κ(x, fail)→ bad (RBad1’)
att′κ(fail, x)→ bad (RBad2’)

We denote C′A(C0) = { (RInit’), (RGen’), (RFail’), (Rf’), (Rs’), (Rl’), (RIn’), (RIBad1’),
(RIBad2’), (RBad1’),(RBad2’), (Rap’), (Rtp’) }.

4.3.2 Clauses for the protocol

Similarly to the case of correspondence properties, we consider traces with IO compliance
for some phase κio. Moreover, the translation also introduces two new predicates of arity 2:
s-event′ and m-event′ that are the sure-event and may-event for bitraces. The clauses modeling
the protocol, denoted C′P(C0, κio), are generated by the translation [[|P,O, I|]]κHρ where ρ is
a mapping from variables to terms containing potentially diff, H is a conjunction of facts and
formulae. Then, we have C′P(C0, κio) = [[|P0, ∅, ∅|]]0>ρ0.

[[|0,O, I|]]κHρ = ∅
[[|!oP,O, I|]]κHρ = [[|P, (O, o), (I, i)|]]κHρ where i is a fresh variable
[[|P | Q,O, I|]]κHρ = [[|P,O, I|]]κHρ ∪ [[|Q,O, I|]]κHρ
[[|new a;P,O, I|]]κHρ = [[|P,O, I|]]κH(ρ[a 7→ a[I]])

[[|ino(N, x);P,O, I|]]κHρ =

[[|P, (O, o), (I, diff[x1, x2])|]]κ(H ∧msg′n(fst(Nρ), x1, snd(Nρ), x2))(ρ[x 7→ diff[x1, x2]])

∪ {H O,I−−→ input′κ(fst(Nρ), snd(Nρ))} if (N 6∈ A0 or κ < κio) and x1, x2 fresh
[[|ino(N, x);P,O, I|]]κHρ =

[[|P, (O, o), (I, diff[x1, x2])|]]κ(H ∧ att′κ(x1, x2))(ρ[x 7→ diff[x1, x2]])

if N ∈ A0, κ ≥ κio and x1, x2 fresh
[[|out(N,M);P,O, I|]]κHρ = [[|P,O, I|]]κHρ

∪ {H O,I−−→ msg′κ(fst(Nρ), fst(Mρ), snd(Nρ), snd(Mρ))} if N 6∈ A0 or κ < κio

41

[[|out(N,M);P,O, I|]]κHρ = [[|P,O, I|]]κHρ ∪ {H O,I−−→ att′κ(fst(Mρ), snd(Mρ))}
if N ∈ A0 and κ ≥ κio

[[|let x = D in P else Q,O, I|]]κHρ =⋃
{[[|P,O, Iσ|]]κ(Hσ ∧ φ)(ρσ[x 7→ diff[pt1, pt2]]) | (fst(Dρ), snd(Dρ)) ⇓′ ((pt1, pt2), σ, φ)}

∪
⋃
{[[|Q,O, Iσ|]]κ(Hσ ∧ φ)(ρσ) | (fst(Dρ), snd(Dρ)) ⇓′ ((fail, fail), σ, φ)}

∪ {Hσ ∧ φ O,Iσ−−−→ bad | ((fst(Dρ), snd(Dρ)) ⇓′ ((fail, pt), σ, φ)}

∪ {Hσ ∧ φ O,Iσ−−−→ bad | ((fst(Dρ), snd(Dρ)) ⇓′ ((pt, fail), σ, φ)}
[[|evento(ev);P,O, I|]]κHρ = [[|P,O, I|]]κ

(
H ∧ s-event′(fst(evρ), snd(evρ))

)
ρ

∪ {H O,I−−→ m-event′(fst(evρ), snd(evρ))}
[[|phase κ′;P,O, I|]]κHρ = [[|P,O, I|]]κ′Hρ if κ′ > κ

[[|phase κ′;P,O, I|]]κHρ = ∅ if κ′ ≤ κ
[[|insert tbl(M1, . . . ,Mk);P,O, I|]]κHρ = [[|P,O, I|]]κHρ

∪ {H O,I−−→ table′κ(tbl(fst(M1ρ), . . . , fst(Mkρ), tbl(snd(M1ρ), . . . , snd(Mkρ))}
[[|geto T suchthat D in P else Q,O, I|]]κHρ =⋃

{[[|P, (O, o), (Iσ, Tρ′σ)|]]κ(Hσ ∧ φ)(ρρ′σ) | (fst(Dρρ′), snd(Dρρ′)) ⇓′ ((true, true), σ, φ)}

∪ {Hσ ∧ φ ∧ u 6= true
O,Iσ−−−→ bad | ((fst(Dρρ′), snd(Dρρ′)) ⇓′ ((true, u), σ, φ)}

∪ {Hσ ∧ φ ∧ u 6= true
O,Iσ−−−→ bad | ((fst(Dρρ′), snd(Dρρ′)) ⇓′ ((u, true), σ, φ)}

∪ [[|Q,O, I|]]κHρ
where T = tbl(x1, . . . , xm), ρ′ = [xi 7→ diff[x′i, x

′′
i]]

m
i=1 and x′i, x

′′
i are fresh.

Remark 7. With respect to [CB13], we formally define the translation of phases and tables.
Similarly to correspondence queries, we cannot express in Horn clauses that an element is not
in the table. Thus, the conditions on the table are ignored when executing the else branch. I

4.3.3 Soundness

For biprocesses, we establish two soundness results: one with respect to the convergence of
bitraces, another one with respect to correspondence queries on bitraces. Once again, we
adapt as expected the satisfaction relation ` for derivation with bifacts, that we denote `′. In
particular, items 2 and 1 of Definition 18 depend on the clause (Rl’) instead of (Rl).

Soundness for convergence of bitraces. Similarly to our definition of Ce(T) on traces,
we define C′e(T) on bitraces. For instance, if T ∈ T(−→i′) then C′e(T) = {s-event′(ev, ev′) |
T, τ `i′ s-event′(ev, ev′)}.

The following lemma shows the soundness of the non-derivability of bad.

Lemma 11. Let CI = ρ0, P0,A0 be an initial instrumented biconfiguration. Let Sp be a set of
predicates such that bad 6∈ Sp. Let κio ∈ N.

42

For all T ∈ traceκioIO (CI ,−→i′), if τ is the maximal step in T and ¬T↓↑i then there exists a
derivation D of bad from C′P(CI , κio) ∪ C′A(CI) ∪ C<τe′ (T) such that T,Sp, κio `′ D.

Remark 8. This lemma is very similar to [CB13, Theorem 1] that states the correctness of
the clauses. Similarly to the case of correspondence queries, this theorem only states that bad
is derivable from the set of generated clauses whereas we prove that T,Sp, 0 `′ D. This is once
again required to apply ProVerif lemmas. I

For correspondence queries on bitraces, we can restrict the set of clauses we consider.
All clause of the form H −→ bad in C′P(CI , κio) and C′A(CI) aim to check whether a bitrace
diverges. Thus we can discard the clauses H −→ bad. Let us denote Cc(CI , κio) be the set of
clauses in C′P(CI , κio)∪C′A(CI) that does not have bad as conclusion. We obtain the following
soundness result.

Lemma 12. Let CI = ρ0, P0,A0 be an initial instrumented biconfiguration. Let Sp be a set of
predicates. Let κio ∈ N.

For all T ∈ traceκioIO (CI ,−→i′), for all ground bifacts F different from a sure-event, for all
steps τ , if T, τ `κioIO′ F then there exists a derivation D of F at step τ from Cc(CI , κio)∪C′e(T)
such that T,Sp, κio `′ D.

4.4 Precise actions

We showed in Lemma 2 that all tuples (O, I) found in the instrumented semantics to be
compatible with one another. However, in the saturation procedure, ProVerif may build
derivations that do not satisfy this property which may lead to false attacks.

Example 17. Consider P0 = new k; out(c, senc(senc(s, k), k)); ino(c, x); out(c, sdec(x, k)), ρ0 =
[c 7→ c[]; s 7→ s[]] and the initial instrumented configuration CI = ρ0, P0, {c}. The function
symbols senc and sdec respectively are the symmetric encryption and decryption. CI satis-
fies the secrecy of s. Intuitively, the process allows the intruder to decrypt only one cypher
encrypted with the key k but not two. Thus, the intruder cannot decrypt senc(senc(s, k), k).
However, from CA(CI) ∪ CP(CI , 0), we can build the following derivation:

att0(senc(x, k[])
(o),(senc(x,k[]))−−−−−−−−−−→ att0(x)(o), (senc(s[], k[]))

att0(senc(x, k[])
(o),(senc(x,k[]))−−−−−−−−−−→ att0(x)(o), (senc(senc(s[], k[]), k[]))

(∅,∅)−−−→ att0(senc(senc(s[], k[]), k[]))∅, ∅

att0(s[])

att0(senc(s[], k[]))

att0(senc(senc(s[], k[]), k[]))

This derivation will be considered by ProVerif meaning that ProVerif will indicate
that it is not able to prove the secrecy of s. However, one can notice that the two tuples
((o), (senc(s[], k[]))) and ((o), (senc(senc(s[], k[]), k[]))) are not compatible hence this deriva-
tion cannot correspond to a real trace of the instrumented semantics. I

43

To prevent ProVerif from failing on such cases, the set of clauses CP(CI , κio) is aug-
mented with an event precise when translating inputs and table lookups as follows:

[[ino(M,x);P,O, I]]κHρ =

[[P, (O, o), (I, x′)]]κ(H ∧ s-event(o[I], precise(x′)) ∧msgκ(Mρ, x′))(ρ[x 7→ x′])

where x′ is a fresh variable and I is obtained from I by keeping only the session identifiers
[[geto T suchthat D in P else Q, κ,O,H, I]]ρ =

{[[P, (O, o), (Iσ, Tρ′σ)]]κ(Hσ ∧ s-event(o[I], precise(Tρ′σ)) ∧ tableκ(Tρ′σ) ∧ φ)(ρρ′σ) |
equals(Dρρ′, true) ⇓′ (true, σ, φ)}

∪[[Q, κ,O,H, I]]ρ

where T = tbl(x1, . . . , xm), ρ′ = [xi 7→ x′i]
m
i=1, x

′
i fresh variables and I is obtained

from I by keeping only the session identifiers

To ensure that ProVerif only considers derivations that satisfy compatibility, we rely on
the newly introduced events precise and the following axiom:

event(o, precise(x)) ∧ event(o, precise(x′))⇒ x = x′

This axiom indicates that whenever the derivation contains two events precise with the same
occurrence, they should also have the same input messages.

Example 18. Continuing Example 17, we obtain the following derivation with the augmented
set of clauses CP(CI , 0):

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[]))
(o),(senc(x,k[]))−−−−−−−−−−→ att0(x)(o), (M1)

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[]))
(o),(senc(x,k[]))−−−−−−−−−−→ att0(x)(o), (M2)

s-event(o[], precise(M1))

(∅,∅)−−−→ att0(M2)∅, ∅ s-event(o[], precise(M2))

att0(s[])

att0(M1)

att0(M2) s-event(o[], precise(M2))

s-event(o[], precise(M1))

with M1 = senc(s[], k[]) and M2 = senc(senc(s[], k[]), k[]). On this derivation, the application
of the axiom will allow ProVerif to find a contradiction since M1 and M2 cannot be equal.
Hence the derivation will be discarded. I

Remark 9. In ProVerif 2.00, the compatibility property is only taken into account during
an attack reconstruction but not during the saturation procedure. I

Remark 10. The precise axiom is the only built-in axiom in ProVerif as we provide a proof
in this paper of its correctness. Note that ProVerif does not prove any of the user-defined
axioms. I

44

5 Saturation procedure

In this section, we describe the saturation procedure we use to prove the existence of a deriva-
tion for bad or facts in correspondence queries. We will first explain the resolution rule and
selection function that are at the heart of the procedure. Second, we will present the clas-
sic simplification rules that are already used by ProVerif. Third, we will present our new
simplifications rules based on lemmas. Finally, we will show how the saturation procedure
handles inductive queries. With this final set of simplifications rules, one can note that the
saturation procedure will from now depend on the query.

Note that in the implementation, ProVerif uses two different saturation procedures, one
for equivalence queries and another one for correspondence queries. While both of them are
based on the same principle, i.e. generating new rules by resolution, they apply different sets
of simplification rules. Therefore, when describing the latter, we will clarify whether these
simplifications are for correspondence or equivalence queries.

Our saturation procedure removes the labels (O, I) on clauses in CP(CI , κio) and C′P(CI , κio).
Intuitively, since we have recorded the information they provide within event precise (see Sec-
tion 4.4), we don’t need them in the saturation procedure.

5.1 Resolution rule and selection function

The saturation procedure will generate new clauses by combining two existing clauses. Assume
that C is a set of clauses, the resolution rule proceeds as follows:

H −→ C ∈ C F ∧H ′ −→ C ′ ∈ C σ = mgu(F,C)
(Res)

Hσ ∧H ′σ −→ C ′σ

The resolution rule allows to shorten the size of the derivations, e.g. a derivation for an
instance C ′σ could directly use the newly generated rule instead of the two rules H −→ C
and F ∧H ′ −→ C ′ separately. To avoid trivial termination issues, the application of (Res) is
restricted by a selection function. In particular, the resolution procedure is parameterized by
a set of facts that cannot be selected.

Definition 19. We say that a fact F is unselectable when F is of the form atti(u), s-event(ev)
or s-event′(ev) for all (may-fail) variables u, for all i ∈ N and for all events ev. We denote
by Fusel the set of unselectable facts.

We say that sel is a selection function for Fusel when sel is a function from clauses to sets
of facts such that:

• sel(H → C) ⊆ H \ Fusel

• att′κ(x, x′) ∈ sel(H ∧ φ → C) implies that x or x′ is a variable of φ and for all F ∈
H \ Fusel, F = att′κ′(y, y

′) for some y, y′, κ′.

• If C ∈ Fusel and sel(H → C) = ∅ then for all facts F ∈ H, F ∈ Fusel.

For the rest of this paper, we will fix a set of unselectable facts Fusel and a selection function
sel. The resolution rule is applied only when sel(H → C) = ∅ and F ∈ sel(F ∧H ′ → C ′).

45

Remark 11. The main goal of the saturation procedure is to apply the resolution rule until
reaching a fixpoint. Thus, the more restrictive the selection function sel is, the more likely the
procedure will terminate. However, it also reduces the precision of ProVerif since it will stop
resolving fact in more cases. This is one of the reason the default selection function focuses
only on may-events and attacker facts containing only variables: May-events by definition
cannot be solved; an attacker fact with just a variable indicates that the attacker can generate
any term to instantiate the variable. In particular the attacker can replace the variable by a
fresh name, which would not have required any resolution. I

5.2 Classic simplification rules

After generating a new clause by resolution, ProVerif applies multiple simplification rules.
Some of them are standard and hold for both equivalence and correspondence queries.

C ∪ {F ∧H → F}
(Taut)C

C ∪ {H ′ ∧H ∧ φ→ C} H ′σ ⊆ H φ |= φσ dom(σ) ∩ fv(H,C) = ∅
(Red)

C ∪ {H ∧ φσ → C}

C ∪ {attκ(x) ∧H ∧ φ→ C} x does not appear in H, C
(Att)

C ∪ {H ∧ φ→ C}

C ∪ {att′κ(x, y) ∧H ∧ φ→ C} x and y do not appear in H, C
(Att’)

C ∪ {H ∧ φ→ C}

The rule (Taut) removes a clause that has a fact as both hypothesis and conclusion. The
rule (Red) removes redundant facts from the hypotheses of a clause. The rule (Att) and the
equivalent rule for bitraces (Att’) removes a fact attκ(x) where the variable x does not occur
anywhere else in the clause other than in the constraint formula. Intuitively, we can always
obtain an equivalent derivation where we replace x by any fresh name from the attacker or by
a natural number that satisfies the constraint formula. As previously mentioned, ProVerif
always applies the most general unifier of equalities in the formula when it exists or discards the
clause otherwise. ProVerif also considers transformations for simplifying the disequalities.
These transformations only modify the formulas in the clause and preserve their solutions. In
particular, it discards the clause when the disequalities are not satisfiable. We will regroup
these transformations under one rule that we call (Rφ). We refer the reader to [BAF08, Bla16]
for more details.

Vanilla ProVerif also considers specific transformation rules to deal with data construc-
tor function symbols. By definition of the clause (Rf), we know that for all g/m ∈ Fdata, for
all phases n, the following clauses are in CA(CI).

attκ(x1) ∧ . . . ∧ attκ(xm) −→ attκ(g(x1, . . . , xn)) (Rfg)
attκ(g(x1, . . . , xm)) −→ attκ(xi) for all i ∈ {1, . . . ,m} (Rfπgi)

Hence on a clause R = H ∧ attκ(g(M1, . . . ,Mm)) −→ C where g ∈ Fdata, we can apply the
resolution between R and Rfg. This would lead to the rule H∧attκ(M1)∧. . .∧attκ(Mm) −→ C.
Similarly, on a clause R = H −→ attκ(g(M1, . . . ,Mm)) we can apply the resolution between R
and Rfπgi leading to the rules H −→ attκ(Mi) for all i ∈ {1, . . . ,m}. To speed up the saturation
procedure, we always apply these resolutions, which lead to the following transformation rules.

46

C ∪ {R = (attκ(g(M1, . . . ,Mm)) ∧H −→ C)} g ∈ Fdata R 6= (Rfπgi) for all i
(DataHyp)

C ∪ {attκ(M1) ∧ . . . ∧ attκ(Mm) ∧H −→ C}

C ∪ {R = (H −→ attκ(g(M1, . . . ,Mm)))} g ∈ Fdata R 6= (Rfg) (DataCl)
C ∪ {H −→ attκ(Mi)}mi=1

As usual, we have a version of these two transformation rules for bitraces that we de-
note DataCl’ and DataHyp’ where bifacts att′κ(g(M1, . . . ,Mm), g(N1, . . . , Nm)) are split into
att′κ(M1, N1), . . . , att′κ(Mm, Nm).

5.3 General redundancy

The rule Red focuses on redundant facts within a clause. More generally, we also consider a
transformation that checks whether a clause itself is redundant with respect to the rest of the
clauses with no hypothesis selectable. Intuitively, we will remove a clause R with sel(R) = ∅
if for all derivations using R, we can build another derivation for the same fact that does not
use the clause R. We formally define this notion by introducing partial derivations.

Definition 20. Let C be a set of clauses. Let F be a fact (not necessarily closed). A partial
derivation D of F from C is a finite tree defined as follows:

• its nodes can either be unlabeled or be labeled by clauses R ∈ C. Furthermore, the root
is never labeled and all internal nodes (i.e. not the root nor leaves) are labeled.

• incoming edges of unlabeled leaves can be labeled by facts or formulae. All other edges
are only labeled by facts.

• if the tree contains a node labeled by R with one incoming edge labeled by F0 and n
outgoing edges labeled by H1, . . . ,Hn (possibly facts or formulae) then R w H1 ∧ . . . ∧
Hn → F0.

• the root has one outgoing edge, labeled by F .

• a node cannot be labeled by a clause attκ(x)∧H → attκ′(x) where H 6= ∅ or κ′ 6= κ+ 1.

We denote by Fus(D) the set of all facts and formulae labeling the incoming edges of unlabeled
leaves. We also denote by Fs(D) the set of all facts labeling the incoming edges of labeled
nodes.

Intuitively, the leaves without label are facts that haven’t been solved by resolution yet.
Moreover, the last item of the definition indicates that the phase can only be changed by
application of the clause Rap.

The general redundancy transformation rule is thus defined as follows:

C ∪ {H −→ F} C′ = {R′ ∈ C | sel(R′) = ∅} sel(H −→ F) = ∅
∃ D partial derivation of F from C′ s.t.

Fus(D) −→ F w H −→ F and pred(Fs(D)) ∩ Sp = ∅
(GRed(Sp))C

47

Note that the rule is parametrized by the set of predicates Sp. This is the same set we use in
Theorem 1 to prove the soundness of the initial set of generated clauses w.r.t. the instrumented
semantics. As previously mentioned, the set Sp represents the set of predicates that we need
to prove in the correspondence query. For the facts with these predicates, it is crucial that
we preserve the order in which they are satisfied in the trace (as stated in Definition 18).
However, in the rule GRed(Sp), when we replace a clause H −→ F by the derivation D, there
is no guarantee that the facts in Fs(D) are satisfied by the trace. Therefore, we only apply
the transformation if pred(Fs(D)) ∩ Sp = ∅.

Specific rules for equivalence properties As previously mentioned, we assume that the
destructor equals is defined by the following set def(equals):{

equals(x, x)→ x; equals(fail, u)→ fail
equals(u, fail)→ fail; equals(x, y)→ fail || x 6= y

}
Therefore, in the clauses for the attacker, two of the instances of the clauses (Rf’) will be:

att′κ(x, x′) ∧ att′κ(x, y′) ∧ x′ 6= y′ → att′κ(x, fail)
att′κ(x, x′) ∧ att′κ(y, x′) ∧ x 6= y → att′κ(fail, x′)

By simple resolution between these clauses and (RBad1’) and (RBad2’), we obtain the clauses

att′κ(x, x′) ∧ att′κ(x, y′) ∧ x′ 6= y′ → bad

att′κ(x, x′) ∧ att′κ(y, x′) ∧ x 6= y → bad

We can be more general by considering two attacker facts that are not in the same phase
thanks to the rule (Rap’). Hence we have the following two rules:

att′κ(x, x′) ∧ att′κ′(x, y
′) ∧ x′ 6= y′ → bad (REq1)

att′κ(x, x′) ∧ att′κ′(y, x
′) ∧ x 6= y → bad (REq2)

These clauses allow us to apply the following simplification rules.

C ∪ {R = (att′κ(M,N) ∧ att′κ′(M,N ′) ∧H → C)} R 6= (REq1)
(Eq1)C ∪ {att′κ(M,N) ∧ att′κ′(M,N ′) ∧H ∧ (N = N ′) −→ C}

C ∪ {R = (att′κ(N,M) ∧ att′κ′(N
′,M) ∧H → C)} R 6= (REq2)

(Eq2)C ∪ {att′κ(N,M) ∧ att′κ′(N
′,M) ∧H ∧ (N = N ′)→ C}

Indeed, if a derivation of bad exists where the last clause is R and N 6= N ′, then we can
replace the application of R with (REq1) or (REq2) and derive bad immediately. Therefore,
we can restrict R to apply only when N = N ′.

5.4 Natural numbers

As mentioned in Section 4, formulae now contain predicates on natural numbers, such as
M ≥ N , ¬nat(M) and nat(M). The simplification rules presented in this section aim to
determine whether they are satisfiable or if some equalities are forced by these predicates.
Following the work in [CCT18], we rely on the algorithm of Pratt [Pra77] for checking the
satisfiability of inequalities.

48

Proposition 2 ([CCT18]). There is a polynomial time algorithm checkeq that given a con-
junction φ of inequalities between terms returns:

• ⊥ if φ has no solution

• a substitution σ′ such that for all solutions σ of φ, there exists a substitution δ such that
σ = σ′δ.

Relying on the algorithm checkeq, we can consider the following simplification rules specific
for natural number predicates.

C ∪ {H ∧ φ→ C} φ =
∧
iMi ≥ Ni checkeq(φ) = σ

C ∪ {Hσ ∧ φσ → Cσ}

C ∪ {H ∧ φ→ C} φ =
∧
iMi ≥ Ni checkeq(φ) = ⊥
C

In [CCT18], the negation of M ≥M ′ is directly translated into M ′ ≥M + 1. This is only
possible because they consider a semi-typed attacker differentiating terms of type natural
number from other terms. As such, in a process in(c, x : nat);P , x can only be instantiated
by a natural number. In this work however, we consider a fully untyped attacker. Therefore,
in our setting, the semantics of M ≥M ′ is that both M and M ′ are natural number and M is
greater than M ′. Thus, the negation of M ≥M ′ is ¬nat(M)∨¬nat(M ′)∨M ′ ≥M + 1. The
following transformations handle the predicates ¬nat(M), nat(M) and check that all terms
M,M ′ in an inequality M ≥M ′ can be natural numbers.

C ∪ {M ≥M ′ ∧H → C}
C ∪ {nat(M) ∧ nat(M ′) ∧M ≥M ′ ∧H → C}

C ∪ {nat(succ(M)) ∧H → C}
C ∪ {nat(M) ∧H → C}

C ∪ {¬nat(succ(M)) ∧H → C}
C ∪ {¬nat(M) ∧H → C}

C ∪ {nat(f(M1, . . . ,Mn)) ∧H → C} f 6∈ {succ, zero}
C

C ∪ {¬nat(f(M1, . . . ,Mn)) ∧H → C} f 6∈ {succ, zero}
C ∪ {H → C}

C ∪ {¬nat(M) ∧ nat(M) ∧H → C}
C

It is easy to see that these transformations preserve the solutions of a formulae. In the
rest of this paper, we will regroup all these transformations into a single transformation rule,
called Nat, which typically corresponds to the application of these rules on a formula of a
clause until either reaching a fixpoint or until removing the clause from the set (when the
formula has no solution).

49

Specific rules for correspondence properties By definition, an attacker knows all nat-
ural numbers since the function symbols zero and succ are public. In particular, the following
clauses can be found in CA(CI):

attκ(x) → attκ(succ(x)) (R+)
→ attκ(zero) (R0)

Hence, when the resolution generates a clause H ∧ φ → attκ(M) where M is a natural
number, we can ignore this clause. This is sound since we can always build a derivation of
attκ(M) from the clauses (R+) and (R0). Note that this derivation satisfies any trace from
traceκioIO (CI ,−→i) as they require the attacker to always build the natural number used in the
trace at its beginning.

The rule is thus formalised as follows:

C ∪ {R = (H ∧ φ→ attκ(M))} φ |= nat(M) R 6∈ {(R+), (R0)}
(NatCl)C

Specific rules for equivalence properties As in the correspondence properties, the fol-
lowing clauses are in C′A(CI):

att′κ(x, y) → attκ(succ(x), succ(y)) (R+’)
→ att′κ(zero, zero) (R0’)

Thus we can once again apply a simplification rule when the conclusion of a clause is a natural
number.

C ∪ {R = (H ∧ φ→ att′κ(M,M))} φ |= nat(M) R 6∈ {(R+’), (R0’)}
(NatCl’)C

Additionally when we obtain a clause R = (att′κ(M,N) ∧ H −→ C) where M or N is a
natural number, we can enforce that M = N . Indeed, we know from Definition 12 that we
only consider traces where the attacker build the natural number in the trace directly at its
beginning. Thus, intuitively, if a derivation relies on the clause R, then it would imply that
T, τ `κioIO att′κ(M,N) for some step τ and that there is a derivation D of att′κ(M,N). By a
minimality argument, we can assume that D does not rely on the clause R. (Otherwise, there
is a smaller derivation D′ of att′κ(M,N) within D.) Assuming that M ∈ N and M 6= N ,
we would therefore be able to build a derivation of bad using D, the clause (REq1) and the
derivation of att′κ(M,M) using the clauses (R+’) and (R0’). Note that this derivation of bad
does not use the clause R.

C ∪ {att′κ(M,N) ∧H ∧ φ→ C} φ |= nat(M) ∨ nat(N)
(NatHyp’)

C ∪ {att′κ(M,N) ∧H ∧ φ ∧ (M = N)→ C}

5.5 Applying ProVerif lemmas

As mentioned in Section 2.4, we introduce in this paper ProVerif lemmas that are cor-
respondence queries F1 ∧ . . . ∧ Fn ⇒ ψ that do not contain any injective event nor nested
query. These lemmas are typically declared and proved before the current queries. Thanks
to Lemma 1, we know that all queries can be transformed into queries in disjunctive normal

50

form (DNF). Hence, we assume in this section that all lemmas are in DNF. In this section,
we will denote L,L′, . . . the sets of lemmas.

Concretely, given an initial instrumented configuration CI , an integer κio, a set of ProVerif
lemmas L and a IO-κio-compliant query %, ProVerif will first try prove that CI satisfies all
lemmas in L without any assumption, then it will prove that CI satisfies % using the proved
lemmas in the saturation. In that respect, ProVerif will thus saturate twice the main set of
clauses CA(CI) ∪ CP(CI , κio), once to prove the lemmas in L and a second time to prove the
query % but using the simplification rules we describe in this subsection.

In Lemma 1, we showed that for all predicate sets Sp, for all executable facts F in a
trace T at step τ , there exists a derivation D of F such that T,Sp, κio ` D. In particular,
T,Sp, κio ` D indicates that for all facts F ′ in D, if pred(F ′) ∈ Sp then T, τ ′ `κioIO F ′ for some
τ ′. Thus, given a lemma F1 ∧ . . . ∧ Fn ⇒

∨m
i=1 ψi, if there exists a substitution σ such that

F1σ, . . . , Fnσ are facts of D with allowed predicates (i.e. predicates in Sp) then it implies that
there exists i ∈ {1, . . . ,m} such that ψiσ holds on the trace T .

This property is the core of the simplification rule below. For this rule, given a conjunc-
tion of atomic formulas ψ, we denote by dψesure the formula obtained from ψ by replacing
all events event(ev) with sure-events s-event(x, ev) with x a fresh variable and all bievents
event′(ev, ev′) with sure-events s-event′(ev, ev′). Similarly, given a query conclusion ψ, we
denote by dψemay the query conclusion obtained from ψ by replacing all events event(ev) with
may-events m-event(x, ev) with x a fresh variable and all events event′(ev, ev′) with may-
events m-event′(ev, ev,′). Moreover, we denote by Cstd the set of clauses containing for all
phases the clauses (Rl), (Rap), (Rl’), (Rap’), (Rfg), (Rf′g), (Rf′πgi) and (Rfπgi) for all g ∈ Fdata
and i. Note that since the function symbols succ and zero are data constructors, the set Cstd
contains the clauses for natural numbers (R+) and (R0).

C ∪ {R = (H → C)} (
∧n
i=1 Fi ⇒

∨m
j=1 ψj) ∈ L R 6∈ Cstd

∀i, pred(Fi) ∈ Sp and either dFiσesure ∈ H
or (dFiσemay = C and ∀j,∀F ∈ ψj , mgu(dFσemay, C) = ⊥)

(Lem(L,Sp))C ∪ {H ∧ dψjσesure −→ C}mj=1

Notice that we require dFiσesure ∈ H and not Fiσ ∈ H. Indeed, events in lemmas are
expressed using the predicate event whereas events in the hypotheses of a clause are expressed
using the predicate s-event. Similarly, when matching a the premise of the lemma with the
conclusion C, we require that dFiσemay = C and not Fiσ. Notice that in this case, we also
require the conclusion C to not be unifiable with any of the events in the conclusion of lemma∨m
j=1 ψj . The reason for this condition is that we want to ensure that any events in the

hypotheses of a clause occurs strictly before the conclusion of the clause. However, a lemma
only guarantee us that the events in

∨m
j=1 ψj occur before or at the same time as the fact

Fi. Hence, by requiring that the conclusion C is not unifiable with any events in
∨m
j=1 ψj , we

ensure that they occur strictly before C.
Finally, notice that we prevent lemmas to be applied on clauses in Cstd: these clauses

are useful to guarantee some properties of the resolution algorithm, and so should not be
modified by applying lemmas. Applying lemmas to these clauses is also unlikely to bring
useful information during the saturation procedure.

Applying inductive lemmas The rule Lem(L,Sp) can only be applied when ProVerif
already proved that the lemmas in L are true. For proving an inductive lemma, we can in fact

51

use a similar simplification rule. As mentioned in Section 3.3, we prove queries by induction
on the size of the trace and the multiset of the steps on which the hypotheses of the query are
satisfied.

As for the application of non-inductive lemmas, we know from Theorem 1 that for all
predicate sets Sp, for all executable facts F in a trace T at step τ , there exists a derivation D
of F such that T,Sp, κio ` D. Hence by Definition 18, for all nodes of the derivation, if the
rule labeled on the node is not the rule (Rl) then all facts on the outgoing edges of the node
(i.e. its hypotheses) are satisfied by the trace at a step strictly before the fact on the incoming
edge (i.e. its conclusion), provided they have predicates allowed by Sp. Moreover, Item 4
of Definition 18 indicates typically that when a fact attκ(f(M1, . . . ,Mn)) with f ∈ Fdata is
in the hypotheses of a rule then either the rule is a projection rule or T, τ0 `κioIO F when
pred(F) ∈ Sp. Therefore, we can apply on these facts our inductive hypothesis. Note that
even if the conclusion of the clause may not have an allowed predicate, the main derivation
will necessarily have allowed predicates in its conclusion since we are proving the query by
induction.

C ∪ {R = (H → C)} R 6∈ Cstd
(
∧n
i=1 Fi ⇒

∨m
j=1 ψj) ∈ L ∀i, pred(Fi) ∈ Sp and dFiσesure ∈ H

(Ind(L,Sp))C ∪ {H ∧ dψjσesure −→ C}mj=1

5.6 The saturation procedures

We combine the simplification rules to define our saturation procedures for both correspon-
dence and equivalence queries. Let L, Li be two sets of lemmas. Intuitively, L is the set
of lemmas that was already proved whereas Li is the set of inductive lemma obtained from
queries that need to be proved by induction. Let C be a set of clauses. Let Sp a set of pred-
icates. We define the algorithm simplify

Sp
L,Li(C) as the repeated application on C of the rules

Taut, Red, Att, Att’, Rφ, DataHyp’, DataHyp, DataCl, DataCl’, Nat, NatCl, NatCl’, and the
rules Lem(L,Sp), Ind(Li,Sp) until a fixpoint is reached.

We say that a clause is simplified when it is left unchanged by the rules used in simplify
Sp
L,Li(C)

other than the rules Lem(L,Sp) and Ind(Li,Sp). As such, all clauses in simplify
Sp
L,Li(C) are

simplified.
Note that simplify

Sp
L,Li(C) includes the application of the rules on clauses and biclauses.

However, the syntax of clauses and biclauses being distinct, in pratice a rule for biclauses will
never be applied when proving a correspondence query and vice-versa.

We also define the function condenseSp(C) that eliminates from C the clauses that are
subsumed by other clauses from C and that applies the rule GRed(Sp) repeatedly until a
fixpoint is reached.

Finally, we define the algorithm saturate
Sp
L,Li(C) that (i) applies condenseSp(simplify

Sp
L,Li(C)),

(ii) generates a new clause R by application of the resolution rule Res and simplifies it hence
generating a new set of clauses C′ = simplify

Sp
L,Li({R}), (iii) condenses the set C′ with the

current set of clauses, (iv) repeats the steps (ii) and (iii) until a fixpoint is reached, (v) returns
the set of clauses R such that sel(R) = ∅.

52

5.7 Soundness of the saturation procedures

The soundness of the saturation procedure holds for all sets of clauses that satisfy some
origination property defined as follows.

Definition 21. We say that a clause H −→ C is well originated when

• for all variables x (different from a session identifier variable), if x occurs in C (resp.
fst(C), snd(C)) or in a fact F (resp. fst(F), snd(F)) of H different from an event (resp.
bievent) then there exist F ′ in H and a term M such that x occurs in M and either
F ′ = attκ(M) (resp. fst(F ′), snd(F ′)) or F ′ = attκ(N,M) (resp. fst(F ′), snd(F ′)) for
some N or F ′ = tableκ(M) (resp. fst(F ′), snd(F ′)).

• if C is a fact with phase κ then for all facts in H with phase κ′, we have κ ≥ κ′.

A set of clauses is well originated when all its clauses are well originated.

In terms of processes, the well-origination property states that all variables in the clauses
have always been introduced by an input or a table lookup. Moreover, it also states that
phases can never decrease. All clauses generated by ProVerif are in fact well-originated.

A mentioned in Section 3.3, ProVerif is now capable of proving queries by induction and
can rely on lemmas. Therefore, our soundness results also exhibit the inductive hypotheses
and lemmas. We gather these properties in the predicate HypL,Li(T, τ̃) defined below.

Definition 22. Let CI be an initial instrumented configuration. Let L, Li be two sets of
lemmas. Let R be a set of fully IO-κio-compliant restrictions. Let τ̃ be a tuple of steps. Let
T ∈ traceκioIO (CI ,−→i)|R. We define the predicate HypL,Li(T, τ̃) to hold if and only if

• for all % ∈ L, (`κioIO ,`i, traceκioIO (CI ,−→i)|R) |= %;

• for all % ∈ Li, for all T ′ ∈ traceκioIO (CI ,−→i)|R, for all tuples of steps τ̃ ′, if (T ′, τ̃ ′) <ind
(T, τ̃) then IH%(T ′, τ̃ ′).

We can now state the soundness of the saturation procedures.

Theorem 2. Let CI be an initial instrumented configuration. Let Sp be a set of predicates.
Let L, Li be two sets of lemmas. Let R be a set of fully IO-κio-compliant restrictions. Let
T ∈ traceκioIO (CI ,−→i)|R.

For all well originated sets of clauses C containing Cstd, for all derivations D of F at step
τ from C∪Ce(T) such that HypL,Li(T, (τ)) and T,Sp, κio ` D, there exists a derivation D′ of
F at step τ from saturate

Sp
L∪R,Li(C) ∪ Ce(T) such that T,Sp, κio ` D′.

In Lemma 12, we showed a soundness result for correspondence queries on bitraces by
focusing only on the set of the clauses Cc(CI , κio) which does not contain clauses with the
fact bad as conclusion. Hence, the natural next step would have been to saturate only the
set Cc(CI , κio). However, our experiment showed that on many examples, the saturation
would enter a loop and never terminate whereas the saturation on the full set of clauses
C′P(CI , κio) ∪C′A(CI) would terminate. At first glance, this result may seem counter intuitive
as Cc(CI , κio) is strictly included in C′P(CI , κio) ∪ C′A(CI). However, one of the main reasons
for this behaviour comes from our definition of subsumption (Definition 16) in which a clause
with bad as conclusion can subsume a clause with a conclusion different from a fact bad.

53

This definition of subsumption is tailored for equivalence properties as it indicates that we
can remove a clause if we are already able to derive bad from its hypotheses. However, when
removing all clauses with bad as conclusion, clauses that would have been removed are now
kept in the saturation which leads to the termination issues we experimented. To circumvent
such problems, we allow some clauses with bad as conclusion to be saturated. Next theorem
shows that we can consider a flexible set of clauses to saturate. Once again, we consider the
predicate Hyp′L,Li(T, τ̃) for the bitrace T and tuple of steps τ̃ .

Theorem 3. Let CI be an initial instrumented biconfiguration. Let Sp be a set of predicates.
Let L, Li be two sets of ProVerif IO-κio-compliant lemmas on bitraces. Let R be a set of
fully IO-κio-compliant bi-restrictions. Let T ∈ tracenIO(CI ,−→i′)|R.

For all well originated sets of clauses C containing C′std, for all derivations D of F (F
possibly being bad) at step τ from C ∪ C′e(T) such that Hyp′L,Li(T, (τ)) and T,Sp, κio `′ D,
there exists a derivation D′ of either F or bad at step τ from saturate

Sp
L∪R,Li(C)∪C′e(T) such

that T,Sp, κio `′ D′.

Since we added possibly some clauses with bad as conclusion, Theorem 3 indicates that we
may not be able to build a derivation of the fact F but rather a derivation of bad. In such a
case, ProVerif cannot prove the correspondence query. Though this is a limitation w.r.t. the
correspondence query, this is still satisfactory in the context of equivalence queries. Indeed,
correspondence queries on bitraces are introduced in ProVerif only as lemmas for a proof of
equivalence. Hence, if the saturation for the correspondence query yields bad to be derivable,
we can deduce that the lemma would not be sufficient to help proving the equivalence query
itself (as it would most probably also yield a derivation of bad).

In the implementation ProVerif, we had to decide how to choose Cc(CI , κio) ⊆ C ⊆
C′P(CI , κio)∪C′A(CI). Taking C too close to C′P(CI , κio)∪C′A(CI) would help terminating but
would often derive bad. On other hand, taking C too close to Cc(CI , κio) would often lead
the saturation procedure into a loop. Experimentation showed that a good tradeoff would be
to remove all clauses with bad as conclusion in C′P(CI , κio) but to keep all the clauses from
C′A(CI). Intuitively, it means that we let the attacker distinguish processes from its knowledge
while preventing him from distinguishing the processes through their control flow.

Remark 12. Lemmas on bitraces are best proved by induction since the inductive hypothesis
is also applied during the saturation procedure. This increases the chances to avoid obtaining
a derivation of bad. I

6 The solving procedure

The saturation procedures described in section 5 provide a simplified set of clauses such that
all executable facts are derivable from this set of clauses. In this section, we describe how we
verify that a correspondence or equivalence query holds on the set of saturated clauses.

6.1 The conjunction predicate

The correspondence queries we aim to verify are of the form F1 ∧ . . . ∧ Fn ⇒ ψ meaning
that we need to find derivations for instantiations of F1, . . . , Fn. However, the saturation only
provides us with clauses H −→ C where C is a single fact. Therefore, we introduce a new
predicate that will represent the conjunction of facts F1 ∧ . . . ∧ Fn.

54

Definition 23. Consider a sequence of predicates seq = [p1, . . . , pn] with i1, . . . , in their re-
spective arity. We define the predicate conj seq as a predicate of arity i1 + . . . + in. The
conjunction of facts

∧n
k=1 pk(pt

k
1, . . . , pt

k
ik

) is then represented by the following conjunction
fact F :

F = conj seq(pt
1
1, . . . , pt

1
i1 , pt

2
1, . . . , pt

n
1 , . . . , pt

n
in)

Intuitively, the conjunction fact F regroups all the arguments of all facts pk(ptk1, . . . , ptkik)
in its own arguments.

Example 19. Let seq = [m-event,m-event]. The clause s-event(o1[], A)→ conj seq(o2[], B, o3[], C)
represents that when both events B and C are executed respectively at occurrence o2[] and
o3[] then the event A was previously executed at occurrence o1[].

Note that it is important for seq to be a sequence and not a set. By being a sequence, we
can retrieve from a conjunction fact the corresponding conjunction of facts. I

For sake of simplicity, we will now denote by
cn
i=1 Fi the conjunction fact representing∧n

i=1 Fi.

Remark 13. Note that in the rest of this section, even if the sequence seq contains only one
predicate, we will still rely on the predicate conj seq for the solving procedure. I

6.2 Ordered clauses and derivations

Given a query
∧n
i=1 Fi ⇒ ψ, we use the conjunction predicate

cn
i=1 Fi to generate a set of

clauses that represents any executable instantiation of
∧n
i=1 Fi and that we compute from

the set of saturated clauses Csat obtained with saturate
Sp
L,Li(C) as described in the previous

section.
Intuitively, we will saturate the set of clauses Csat ∪ {

∧n
i=1dFiemay −→

cn
i=1dFiemay}. At

the end of the saturation, the set of clauses with no selectable hypothesis and whose conclusion
is an instance of

cn
i=1dFiemay will represent the set of possible executable instantiations of∧n

i=1 Fi.
We cannot however reuse exactly the saturation procedure saturate

Sp
L,Li(C) due to the

transformation rules for proving ProVerif lemmas by induction. Indeed, these rules rely on
the fact that we only consider derivations of a fact that satisfy T,Sp, κio ` D. In particular,
an inductive lemma is applied during the saturation because we know that all facts in the
hypotheses occurs strictly before the conclusion. Since we now consider conjunction of facts
with the clause

∧n
i=1dFiemay −→

cn
i=1dFiemay, we would like to apply the inductive lemma

when the hypotheses of the clauses on which the lemma is applied satisfy the strict inductive
order <ind defined in Section 3.3, and in particular the strict order on multisets of steps.

To achieve this, in a clause H −→
cn
i=1 Fi, we augment each fact F ′ in H with a partial

function that indicates whether the fact occurred before or strictly before each fact Fi of the
conclusion. Hence assuming that the facts Fi are satisfied at steps τi in the derivation, these
partial functions allow us to compute whether some facts F ′1, . . . , F ′m in H satisfied at step
τ ′1, . . . , τ

′
m verify the strict order {{τ ′1, . . . , τ ′m}} <m {{τ1, . . . , τn}}.

Definition 24. We call ordering function a partial function δ : N→ {<,≤}. We call ordered
facts, denoted F δ, a fact F annotated with an ordering function δ. Finally, an ordered clause
is a clause of the form H −→

cn
i=1 Fi where each elements of H are ordered facts.

55

Example 20. Consider the ordered clause:

s-event(o1, ev1)δ1 ∧ s-event(o2, ev2)δ2 → m-event(o3, ev3)fm-event(o4, ev4)

with δ1 = [1 7→ ≤; 2 7→ <] and δ2 = ∅. The clause indicates that event ev1 occurs before (not
necessarily strictly) ev3, and occurs strictly before ev4. However, since δ2 = ∅, we have no
indication other than ev2 occurs before ev3 or ev4 (not necessarily strictly). I

When the partial function δ is not specified in an ordered fact, we assume that δ = ∅.

Definition 25. Let Sp be a set of predicates. We say that an ordered clause F δ11 ∧. . .∧F δnn ∧φ −→
C satisfies Sp when for all i ∈ {1, . . . , n}, if pred(Fi) 6∈ Sp then < 6∈ img(δi).

We now extend the notion of derivation to take into account ordered clauses.

Definition 26. Let κio ∈ N. Let Csat be a set of selection-free clauses. Let C be a set of
ordered clauses. Let F =

cn
i=1 Fi be a closed conjunction fact. Let τ̃ = (τ1, . . . , τn) be a tuple

of steps. An ordered derivation D of F at steps τ̃ from C and Csat is a finite tree defined as
follows:

1. the root is unlabeled; the child of the root is labeled by an ordered clause from C and all
other nodes are labeled by clauses in Csat;

2. the incoming edge of the child of the root is labeled by F, τ̃ ; all other incoming edges of
nodes are labeled by a fact and a step;

3. if the child η of the root is labeled by a clause R = Gδ11 ∧ . . . ∧Gδmm ∧ φ −→ C then there
exists a substitution σ and some steps τG1 , . . . , τGm such that `i φσ, Cσ = F and η has
m children η1, . . . , ηm where for all k ∈ {1, . . . ,m},

(a) the edge between η and ηk is labeled by Gkσ, τGk ,

(b) the subtree rooted in ηk is a derivation of Gkσ at step τGk , and

(c) for all i ∈ {1, . . . , n}, if δk(i) is defined then τGk δk(i) τi.

Let T be a IO-κio-compliant trace. Let F =
cn
i=1 Fi be closed facts and τ̃ = (τ1, . . . , τn)

be a tuple of steps. We say that T satisfies an ordered derivation D of F at step τ̃ w.r.t. Sp,
denoted T,Sp, κio ` D when

1. for all i ∈ {1, . . . , n}, T, τi `κioIO Fi;

2. if the child η of the root is labeled by a clause R = Gδ11 ∧ . . . ∧ Gδmm ∧ φ −→ C with

η1, . . . , ηm children such that for all k ∈ {1, . . . ,m}, η
Gkσ,τGk−−−−−→ ηk then we have for all

k ∈ {1, . . . ,m}, the subderivation Dk rooted in ηk satisfies T,Sp, κio ` Dk;

Intuitively, an ordered derivation is a conjunction of multiple derivations that may share
hypotheses and that satisfy the ordering functions of ordered clauses. In particular, item 3c of
the definition indicates that when the ordering function δk(i) is defined, i.e. either δk(i) = <
or δk(i) = ≤, the steps τGk and τi must satisfies the ordering function, i.e. τGk < τi or τGk ≤ τi
respectively.

56

6.3 Ordered transformation rules

The saturation procedure described in Section 5 only takes into account standard clauses and
so we need to modify all transformation rules for ordered clauses.

Resolution rule. As mentioned in the beginning of this section, the solving procedure
typically aims to saturate the set of clauses Csat ∪ {

∧n
i=1dFiemay −→

cn
i=1dFiemay}. Note that

all clauses R in Csat satisfy sel(R) = ∅ and no more transformation rules can be applied on
them. Hence, we can separate them from the set of clauses we will build through the solving
procedure. In particular, we can show a simple invariant that conjunction facts can only
occur as a conclusion of a clause. Thus, the application of the resolution rule is necessarily
between a clause H −→ C in Csat and an ordered clause Ho ∧ F δ −→

cn
i=1 Fi. Recall that

Theorem 2 indicates that we are only interested in derivation where all facts of the hypotheses
of a standard clause are satisfied strictly before its conclusion unless their predicates is not in
Sp. Hence, when applying a resolution between C and F δ it implies that all facts in H are
satisfied strictly before F and the ordering function δ can be strictly propagated to the facts
in H.

Formally, given an ordering function δ, we denote by δ< the partial function with the
same domain as δ and such that δ<(i) = < for all i ∈ dom(δ). The resolution rule is therefore
defined as follows:

F1 ∧ . . . ∧ Fn −→ C ∈ Csat F δ ∧Ho −→ C ′ ∈ C σ = mgu(F,C)
for all i ∈ {1, . . . , n}, δi = δ< if pred(Fi) ∈ Sp else δi = δ

(Reso(Sp))
F δ11 σ ∧ . . . ∧ F δnn σ ∧Hoσ −→ C ′σ

Ordered subsumption. We also need to modify the subsumption definition so that it takes
into account the ordering functions on facts.

Definition 27. Given two ordering functions δ and δ′, we denote δ wo δ′ if for all j ∈ N,
(i) if δ(j) is defined then δ′(j) is defined (ii) if δ(j) = < then δ′(j) = <.

Given two multisets H1 and H2 of ordered facts, we denote H1 ⊆o H2 if H1 = {{F δ11 , . . . , F δnn }},
H2 = {{F δ

′
1

1 , . . . , F
δ′n
n }} ∪H ′2 and for all i ∈ {1, . . . , n}, δi wo δ′i.

Let H1 ∧ φ1 → C1 and H2 ∧ φ2 → C2 two ordered clauses. We say that H1 ∧ φ1 → C1

subsumes H2 ∧ φ2 → C2, denoted (H1 ∧ φ1 → C1) wo (H2 ∧ φ2 → C2), when there exists σ
such that (i) either C1σ = C2 or C1 = bad (ii) H1σ ⊆o H2 (iii) φ2 |= φ1σ.

Note that Definition 27 only differs from the original definition of subsumption (Defini-
tion 16) on the notion of multiset inclusion ⊆o of ordered facts . Typically, we need to ensure
that the subsumed ordered clause H2 ∧ φ2 → C2 has stronger ordering functions w.r.t. the
subsuming clause H1 ∧ φ1 → C1. In particular, the subsumption of ordering function satisfies
the following property.

Lemma 13. Let δ, δ′ two ordering functions such that δ wo δ′. For all steps τ, τ ′, for all
i ∈ dom(δ), if τ δ′(i) τ ′ then τ δ(i) τ ′.

Proof. Let τ, τ ′ two steps and i ∈ dom(δ) such that τ δ′(i) τ ′. Since i ∈ dom(δ), then either
δ(i) = < or δ(i) = ≤. In the former case, we deduce from δ wo δ′ that δ′(i) = < = δ(i). Hence
τ δ′(i) τ ′ implies τ δ(i) τ ′. In the latter case, we know that δ′(i) ∈ {<;≤}. Hence τ δ′(i) τ ′

implies τ ≤ τ ′ and so τ δ(i) τ ′.

57

Example 21. The following holds:

• The empty order function subsumes all ordering functions, i.e. ∅ wo δ for all δ.

• [1 7→ ≤] wo [1 7→ <]

• [1 7→ ≤; 2 7→ ≤] 6wo [1 7→ <]

Consider now the ordered clause R = att(a[]) ∧ s-event(o[], A(a[])) −→ att(h(a[])). We have:

• att(x) −→ att(h(x)) wo R

• but att(x)[1 7→<] −→ att(h(x)) 6wo R

The att(x)[1 7→<] −→ att(h(x)) does not subsume R since we have a stricter condition on the
predicate att(x), i.e. that it does appear strictly before att(h(x)). I

Classic simplification rules. Amongst the classical simplification rules, we only need to
focus on the rule Red and DataHyp. The other rules remaining as they are (other than they
are applied on ordered clauses rather than clauses. In particular they preserve the ordering
functions). Note that the rule DataCl will in fact never be applied since the conclusion of an
ordered clause is always a conjunction fact and so not an attacker fact.

For the rule Red, when an ordered fact F ′δ
′
i

i is a duplicate after instantiation of another
fact F δii in the hypotheses of the ordered clause (i.e. F ′iσ = Fi) and the ordering function δ′i
subsumes δi (i.e. δ′i wo δi) then we can keep the ordered fact F δii and remove F ′δ

′
i

i since any
derivation of an instance of F δii would also be a derivation of an instance of F ′δ

′
i

i satisfying
the ordering function. Note that when Fi = F ′i , we don’t need to require δ′i wo δi and we can
consider the intersection of ordering functions δi and δ′i which intuitively corresponds to the
conjunction of constraints given by δi and δ′i.

Formally, δi ∩ δ′i is the ordering function defined on the union of domains of δi, δ′i and such
that for all j ∈ dom(δi ∩ δ′i), (δi ∩ δ′i)(j) = < when < ∈ {δi(j), δ′i(j)} and (δi ∩ δ′i)(j) = ≤
otherwise. Intuitively, if τ and τ ′ are the steps on which Fi and F ′i are satisfied then it implies
that τ and τ ′ satisfy the ordering function δi and δ′i respectively. Notice that in such a case,
min(τ, τ ′) necessarily satisfies both δi and δ′i, so satisfies δ1 ∩ δ2. Hence, we can keep only the
derivation corresponding to the step min(τ, τ ′).

For the rule DataHyp, we argued that this transformation rule was corresponding intu-
itively to an application of the resolution rule with the clause (Rfg) = attκ(x1)∧. . . attn(xn) −→
attκ(g(x1, . . . , xn)). Note that sel(Rfg) = ∅ since the facts attκ(xi) are not selectable. Hence
(Rfg) ∈ Csat and so the same argument is valid for ordered clauses.

C ∪ {H ∧ φ ∧
∧n
i=1 F

δi
i ∧ F

′δ′i
i → C} ∀i, F ′iσ = Fi and (F ′i = Fi or δ′i wo δi)

φ |= φσ dom(σ) ∩ fv(H,C, F1, . . . , Fn) = ∅
(Redo)

C ∪ {H ∧ φσ ∧
∧n
i=1 F

δi∪δ′i
i → C}

C ∪ {attκ(g(M1, . . . ,Mm))δ ∧H −→ C} g ∈ Fdata
if attκ ∈ Sp then δ′ = δ< else δ′ = δ

(DataHypo)
C ∪ {attκ(M1)δ

′ ∧ . . . ∧ attκ(Mm)δ
′ ∧H −→ C}

58

As usual, we have a version of the transformation rules for bitraces that we denote
DataHyp’o where bifacts att′κ(g(M1, . . . ,Mm), g(N1, . . . , Nm)) are split into att′κ(M1, N1), . . . ,
att′κ(Mm, Nm).

General redundancy In order for the general redundancy rule to take into account ordering
functions, we need to amend the notion of partial derivation. First, as we need to consider a
derivation of a conjunction fact, only the rule labeling the child of the root will be an ordered
clause and all the clauses labeling other nodes are standard clauses from Csat. Second, all
edges are labeled by ordered facts instead of just facts. Third, the ordering functions of the
ordered facts must satisfy the ordering functions of the ordered clause. The formal definition
is given below.

Definition 28. Let Csat be a set of clauses. Let C be a set of ordered clauses. Let Sp be
a set of predicates. Let F be a conjunction fact (not necessarily closed). A partial ordered
derivation D of F from C and Csat w.r.t. Sp is a finite tree defined as follows:

• The root is not labeled and has one outgoing edge labeled F .

• The child of the root is labeled by an ordered clause F δ11 ∧ . . .∧F δnn ∧φ −→ C from C and
has n outgoing subderivation D1

p, . . . ,Dnp and one outgoing unlabeled leave whose edge is
labeled φ.

• There exists a substitution σ such that Cσ = F and for i = 1 . . . n, Dip is a partial
derivation of Fiσ from Csat.

For all i ∈ {1, . . . , n}, we define the multiset Fi of formulas and ordered facts as follows:

• if Di
p contains only a root and an unlabeled leaf, i.e. Fus(Di

p) = {{Fiσ}} then Fi =

{{Fiσδi}}

• else Fus(Di
p) is some multiset {{F1,i, . . . , Fni,i, φi}} and Fi = {{F

δF1,i
1,i , . . . , F

δFni,i
ni,i

, φi}}
where for all j ∈ {1, . . . , ni}, if pred(Fj,i) ∈ Sp then δFj,i = δ<i else δFj,i = δi.

Finally, we denote by Fs(D) the set of all facts labeling the incoming edges of labeled nodes in
D, and we denote by Fus(D) the multiset {{φσ}} ∪

⋃n
i=1 Fi.

The general redundancy rule thus becomes:

C ∪ {H −→ F} sel(H −→ F) = ∅
∃ D partial derivation of F from C and Csat w.r.t. Sp such that

Fus(D) −→ F wo H −→ F and pred(Fs(D)) ∩ Sp = ∅
(GRedo(Sp))C

Natural numbers All other rules for dealing with natural numbers remain as they are and
preserve the ordering functions.

59

Application of lemmas Intuitively, the application conditions for a lemma
∧n
i=1 Fi ⇒∨m

j=1 ψj remain the same. However, when we add the conclusions ψj of the lemma in the
hypotheses of the ordered clause, we need to assign ordering functions on all facts of ψj .
Since lemmas are satisfied on all traces T , we know that if F1σ, . . . , Fnσ are satisfied at
steps τ1, . . . , τn respectively then the facts in ψjσ are satisfied for some τ such that τ ≤
max(τ1, . . . , τn). On an ordered clause, we cannot compute the max of step since we only have
ordering functions δ1, . . . , δn of dF1σesure, . . . , dFnσesure as information. The next best thing
is to consider an ordering function that subsumes all functions δ1, . . . , δn. Given a conjunction
of atomic formulas ψ and an ordering function δ, we denote by dψesureδ the formula obtained
from dψesure by replacing every fact F in dψesure by the ordered fact F δ.

C ∪ {H → C} (
∧n
i=1 Fi ⇒

∨m
j=1 ψj) ∈ L

for all i, pred(Fi) ∈ Sp F ′i = dFiσesure F ′δii ∈ H δ wo δi
(Lemo(L,Sp))C ∪ {H ∧ dψjσesureδ −→ C}mj=1

Application of inductive lemmas Similarly to standard lemmas, we will need to add an
ordering function on the application of an inductive lemma. Moreover, we also need to modify
the application conditions of the rule. First, note that the clauses (Rl) and the projection
clauses (Rfπgi) for data constructor function symbols are not in Csat, which simplifies the
application conditions. Second, in rule Ind(L,Sp) for the saturation procedure, we do not
need to verify that the hypotheses on which we apply the inductive lemma satisfy the order
<ind since the derivation we consider satisfies the trace w.r.t. `κioIO , i.e. we know that the
facts occur strictly before the conclusion and so they satisfy the order <ind. In the verification
procedure, we do not have this property since the conclusion of an ordered clause contains
possibly multiple facts. However, thanks to the ordering functions, we can still determine
when to apply the inductive lemma.

Definition 29. Let n ∈ N. Let δ1, . . . , δm ordering functions with dom(δi) ⊆ {1, . . . , n} for
all i = 1 . . .m. We say that δ1, . . . , δm are n-strict when :

1. either for all k ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , n} such that δk(i) = <

2. or m ≤ n and there exists {j1, . . . , jm} ⊆ {1, . . . , n} such that:

(a) for all k ∈ {1, . . . ,m}, δk(jk) is defined;

(b) for all k, k′ ∈ {1, . . . ,m}, k 6= k′ implies jk 6= jk′ ;

(c) if n = m then there exists k ∈ {1, . . . ,m} such that δk(jk) = < .

Intuitively, when δ1, . . . , δm are n-strict, we can apply our inductive lemmas on the facts
annotated by δ1, . . . , δm. This is demonstrated in the following lemma.

Lemma 14. Let n ∈ N. Let δ1, . . . , δm be n-strict ordering functions. Let τ1, . . . , τn and
τ ′1, . . . , τ

′
m steps. If for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . ,m}, δj(i) defined implies τ ′j δj(i) τi

then {{τ ′1, . . . , τ ′m}} <m {{τ1, . . . , τn}}.

Proof. Let us do a case analysis on which item of Definition 29 is satisfied by δ1, . . . , δm.

60

• Item 1: In such a case, we know that for all j ∈ {1, . . . ,m}, there exists i ∈ {1, . . . , n}
such that δj(i) = < implying that δj(i) is defined. Thus by hypothesis, τ ′j < τi ≤
max(τ1, . . . , τn). Since for all j ∈ {1, . . . ,m}, τ ′j < max(τ1, . . . , τn), we directly obtain
that {{τ ′1, . . . , τ ′m}} <m {{τ1, . . . , τm}}.

• Item 2: Thanks to Item 2b, we know that the indices j1, . . . , jm are distinct and by
Item 2a that δk(jk) is defined for all k ∈ {1, . . . ,m}. By being defined, we deduce that
for all k ∈ {1, . . . ,m}, τ ′k δk(jk) τjk meaning that τ ′k ≤ τjk . Hence, we have show that
the steps τ1, . . . , τm are smaller thanm distinct steps of the multiset {{τ1, . . . , τn}}. When
m < n, it directly entails that {{τ ′1, . . . , τ ′m}} <m {{τ1, . . . , τn}}. When m = n, Item 2c
guarantees that at least one of the ordering functions is strict, i.e. δk(jk) = <, and so
τ ′k < τjk . This allows us to conclude that {{τ ′1, . . . , τ ′m}} <m {{τ1, . . . , τn}}.

We can now state our transformation rule for inductive lemmas.

C ∪ {F ′δ11 ∧ . . . ∧ F ′δmm ∧H →
cn
i=1 F

′′
i } δ1, . . . , δm are n-strict

(
∧m
i=1 Fi ⇒

∨k
j=1 ψj) ∈ L ∀i, pred(Fi) ∈ Sp, dFiσesure = F ′i and δ wo δi (Indo(L,Sp))

C ∪ {F ′δ11 ∧ . . . ∧ F ′δmm ∧H ∧ dψjσesureδ −→
cn
i=1 F

′′
i }kj=1

6.4 The procedure and its soundness

The procedure is the same as the saturation procedure except that we rely on the transfor-
mation rules described in this section. We will denote simplifyS

Sp
L,Li(C), condenseSSp(C) and

saturateS
Sp
L,Li(C,Csat) the corresponding algorithms for verification of correspondence queries.

Theorem 4. Let CI be an initial instrumented configuration. Let Sp be a set of predicates
containing the event predicates m-event and s-event. Let L, Li be two sets of lemmas. let R
be a set of fully IO-κio-compliant lemmas. Let T ∈ traceκioIO (CI ,−→i)|R. Let C be a set of well
originated, simplified, selection free clauses containing the selection free clauses of Cstd.

For all ordered clauses R satisfying Sp, for all ordered derivations D of
cm
i=1 Fi at steps τ̃

from {R} and C ∪ Ce(T) such that HypL,Li(T, τ̃) and T,Sp, κio ` D, there exists an ordered
derivation D′ of

cm
i=1 Fi at steps τ̃ from saturateS

Sp
L∪R,Li({R},C) and C ∪ Ce(T) such that

T,Sp, κio ` D′.

The ordered clause R in the Theorem 4 is typically the initial clause we generate from the
query we are proving. For example, when proving a query event(A)∧event(B)⇒ event(C), we
will apply the solving procedure with the ordered clause m-event(x,A)δA ∧m-event(y,B)δB −→
m-event(x,A)fm-event(y,B) where δA is defined only on 1 with δA(1) = ≤ and δB is defined
only on 2 with δB(2) = ≤. This ordered clause typically requests all derivations that satisfy
both event(A) and event(B). Note that we can use the ordered clause to verify more complex
requests. For instance, by defining the same ordered clause but with a δB being defined as
δB(1) = δB(2) = ≤, we are essentially requesting all derivations where both events A and B
are satisfied and the event B must have occurred before event A.

61

7 The verification procedure

In this section we explain how we verify a query from the set of saturated of clauses. The
complete procedure is quite complex as we need to be able to handle queries that may contain
nested queries and injective events at the same time. For clarity sake, we will start with simpler
queries which will allow us to explain the different components of the procedure separately
and then we will show how to combine all of them to handle the most complex queries.

In Section 2.4, we made the distinction between axioms and lemmas, with lemmas being
intermediate correspondence properties that ProVerif needs to prove before proving the
main queries; and with axioms being similar to lemmas but do not need to be proved since
they are typically guaranteed by other means (e.g. proof by hand). In this section however, as
we explain the verification procedures for a set of queries Q, we will consider a set of lemmas
L guaranteed to hold, independently of how they have been proved. As such, in the statement
of our algorithms and theorems, we will assimilate axioms and lemmas and only talk about a
set of lemmas.

7.1 Equivalence queries

Equivalence queries are the simplest queries in term of verification as most of the work is done
during the saturation procedure. In fact they are the only queries that do not rely on the
solving procedure as we will only look at whether bad is derivable or not. Moreover, equivalence
queries are not proved by induction meaning that the set Li in the saturation procedure is
empty. Finally, the set of predicates Sp used in the saturation and solving procedures matters
to guarantee that facts occur strictly before other. The complete algorithm for verifying
equivalence queries is given in Algorithm 1.

Algorithm 1: prove’(CI ,L,R): Verification procedure for equivalence queries
input: An initial instrumented biconfiguration CI , sets of lemmas L and restrictions

R on bitraces
κio := the smallest natural number such that all restrictions in R are fully
IO-κio-compliant
C := C′P(CI , κio) ∪ C′A(CI)
Sp is the set of all predicates in L ∪R
Csat := saturateB

Sp
L∪R,∅(C)

return ¬∃ (H −→ bad) ∈ Csat

The soundness of the algorithm is given in the following theorem.

Theorem 5. Let C = E , P,A be an initial biconfiguration and CI be its associated initial
instrumented biconfiguration. Let L, R be respectively sets of lemmas and restrictions.

If the following holds:

• for all % ∈ L, names(%) ⊆ E and (`o′ , trace(C,−→o′)|R) |= %

• prove’(CI , [L]i, [R]i) terminates and returns true

then trace(C,−→o′)|R↓↑.

62

Proof. By Lemma 4, trace(C,−→o′)|R↓↑ is equivalent to trace(CI ,−→i′)|[R]i ↓↑i. By Lemma 9,
we deduce that trace(C,−→o′)|R↓↑ is equivalent to traceκIO(CI ,−→i′)|[R]i↓↑i. Similarly, relying on
Lemmas 5 and 10, we know that for all % ∈ L, (`o′ , trace(C,−→o′)|R) |= % implies (`κIO′ ,`i′
, traceκIO(CI ,−→i′)|[R]i) |= %.

Let us now assume by contradiction that trace(C,−→o′)|R↓↑ does not hold. Hence, traceκIO(CI ,−→i′

)|[R]i↓↑i does not hold. This implies that there exists a bitrace T ∈ traceκIO(CI ,−→i′)|[R]i such
that ¬T ↓↑. By lemma 11, there exists a derivation D of bad at step τ from C′P(CI , κio) ∪
C′A(CI) ∪ C<τe′ (T) such that T,Sp, κio `′ D.

Denoting C = C′P(CI , κio) ∪ C′A(CI), we now apply Theorem 3 (by considering the empty
set for the set of inductive lemmas, and the set [L]i for the set of lemmas) which allow us to
deduce that there exists a derivation D′ of bad from saturateB

Sp
[L]i∪[R]i,∅(C)∪C<τe′ (T) such that

T,Sp, κio `′ D.
By construction, D′ being a derivation of bad implies that the child of the root of D′

must be labeled by a clause of the form H −→ bad. Since C<τe′ (T) does not contain any clause
concluding bad, we deduce that (H −→ bad) ∈ saturateB

Sp
[L]i∪[R]i,∅(C). However, by hypothesis,

prove’(CI , [L]i, [R]i) terminates and returns true, which implies by definition that ¬∃ (H −→
bad) ∈ saturateB

Sp
[L]i∪[R]i,∅(C). Hence we obtain a contradiction and so trace(C,−→o′)|R ↓↑

holds.

7.2 Simple correspondence queries

A simple correspondence query does not contain nested queries nor injective events, thus the
conclusion of the query may still contain attacker, message and table facts, events, and generic
predicates. Events are the simplest to check since they are never reduced by the saturation
or solving procedure. Hence, we only need to check whether they occur in the hypotheses of
the clauses obtained through the solving procedure.

This is however not the case of attacker, message and table facts. For example, a fact
attκ((a, b)) would never occur in the hypotheses of the clauses since it would be split in
attκ(a)∧ attκ(b) by the transformation rule DataHyp. For a query event(A)⇒ attκ((a, b)), it
is not sufficient to check whether the fact attκ((a, b)) occurs in the hypotheses of the clauses
obtained through the solving procedure. To be more specific, it would be sound but would
yield too many false positives as the procedure would always fail. Furthermore, the clause we
generate ensures that the facts are satisfied w.r.t. `κioIO which is stronger than the satisfaction
relation `i for the attacker and table facts. Therefore, in the following definition, we show
how to prove a fact w.r.t. `i from the hypotheses of a clause.

Definition 30. Let F be an attacker, message or table fact. Let F1, . . . , Fn be a set of facts.
We say that F is deducible from F1, . . . , Fn under φ if there exists a partial derivation D of F
from {(RInit), (RGen), (RFail), (Rf), (Rap), (Rtp)} such that:

• all facts in Fus(D) are in {F1, . . . , Fn}

• φ is the conjunction of all formulae in Fus(D)

Intuitively, F1, . . . , Fn represent the hypotheses of the clause we obtain through the solv-
ing procedure. Notice that we only allow in the partial derivation the rules (RInit), (RGen),
(RFail), (Rf), (Rap) and (Rtp) which correspond to either initial knowledge of the intruder
(rules (RInit) and (RFail)) or the application of the transition rule I-App, I-New, I-Phase

63

(rules (Rf),(Rap) and (Rtp)). Note that by requiring that the facts in Fus(D) are in {F1, . . . , Fn},
we ensure that the variables of {F1, . . . , Fn} are not instantiated and so the derivation would
hold for any instantiations of the variables of {F1, . . . , Fn}.

The last difficulty comes from checking disequalities and inequalities. When the query
requires to prove a disequalities, say M 6= N , ProVerif 2.00 directly checks whether the
hypothesis of the clause and in particular its disequalities imply the ones of the query. However,
when the conclusion of the query contains disjunctions, this implication of disequalities does
not allow ProVerif to prove simple queries.

Example 22. Consider the query event(A(x)) ⇒ event(B(a)) ∨ x 6= a and assume the solv-
ing procedure generates the clause s-event(o1[], B(x)) −→ m-event(o2[], A(x)). In ProVerif
2.00, the verification would fail since the hypothesis of the clause does not imply x 6= a
and event(B(a)) does not match event(B(x)). In this paper, based on the algorithm presented
in [CCT18], we try to prove the query on a complete coverage of the clause. In our example, the
clause s-event(o1[], B(x)) −→ m-event(o2[], A(x)) would be split into s-event(o1[], B(x)) ∧ x =
a −→ m-event(o2[], A(x)) and s-event(o1[], B(x)) ∧ x 6= a −→ m-event(o2[], A(x)). The latter
would imply x 6= a trivially, whereas the former would be simplified into s-event(o1[], B(a)) −→
m-event(o2[], A(a)) and so would also satisfy the query. I

We formally define the notion of complete coverage as follows.

Definition 31. Let H −→ C be an ordered clause. Let C be a set of clauses. We say that C is
a complete coverage of H −→ C when C ≡ {H ∧ φi −→ C}ni=1 where:

• for all i ∈ {1, . . . , n}, fv(φi) ⊆ fv(H,C)

• φ1 ∨ . . . ∨ φn ≡ >

Given two sets of clauses C,C′. We say that C completely covers C′ when C =
⋃n
i Ci (as

set equality), C′ = {Hi −→ Ci}ni=1 and for all i ∈ {1, . . . , n}, Ci is a complete coverage of
Hi −→ Ci.

Example 23. Coming back to Example 22, the following set C is a complete coverage of
s-event(o1[], B(x)) −→ m-event(o2[], A(x)):

C =

{
s-event(o1[], B(x)) ∧ x = a −→ m-event(o2[], A(x)),
s-event(o1[], B(x)) ∧ x 6= a −→ m-event(o2[], A(x))

}
I

Queries extended with event occurrences The verification of a simple correspondence
query then tries to find one disjunct in the conclusion of the query that matches the hypothesis
of the ordered clauses generated by the solving procedure. Recall that in a correspondence
query on traces, we use the predicates event and injk-event with arity one (for the event)
in both premises and conclusions of queries. However, in ordered clauses, we rely on two
different predicates: (i) s-event(o, ev) for events in conclusion (ii) m-event(o, ev) for events
in hypotheses In particular, note that the event predicates in ordered clauses contain the
occurrence name of the event giving more information on when this event was executed.
Querying the event event(A(M)) can be seen as showing that A(M) was executed without
any condition on its occurrence. However, for nested queries and injective queries, it will

64

be useful to also query events with some conditions on their occurrence. Thus, from now
on, we consider that queries rely on the overloaded predicates event and injk-event that take
into account the occurrence (see Section 3 for the semantics). Note that query with standard
event(A(M) (resp. injk-event(A(M))) can be easily transformed into an equivalent query with
the overloaded definitions of events by adding a fresh variable in the occurrence argument, i.e.
event(x,A(M) (resp. injk-event(x,A(M))) where x is fresh.

Finally, in Section 5, we already introduced the operator dψesure that replaces in ψ
all events event(ev) (resp. injk-event(ev)) with a sure-event s-event(x, ev) with x a fresh
variable. We thus consider the same transformation for our new event predicates, that is
devent(o, ev)esure = dinjk-event(o, ev)esure = s-event(o, ev). Similarly, we consider the opera-
tor dφemay that replace in φ the facts event(o, ev) and injk-event(o, ev) with may-event, i.e.,
devent(o, ev)emay = dinjk-event(o, ev)emay = m-event(o, ev). We also extend these definitions
by replacing all bi-events event′(ev, ev) by m-event′(ev, ev′) and s-event′(ev, ev′) respectively.

Checking the query. Recall that queries are in disjunctive normal form. Hence, a query
% is of the form

∧n
i=1 Fi ⇒

∨m
j=1 ψj where ψj is a conjunction of atomic formulae. Thus to

check a query against an ordered clause R, we need to find a substitution instantiating the
facts of one of the disjuncts that match the facts of the clause. In other words, we always
check whether there exists j ∈ {1, . . . ,m} such that R satisfies the subquery

∧n
i=1 Fi ⇒ ψj .

Such a subquery is called a disjunct query . Formally, a disjunct query is a non-nested and
disjunction free query.

Definition 32 (Solution of a disjunct query). Let % = (
∧n
i=1 Fi ⇒ H ∧φ) be a disjunct query.

A solution of % is a pair (R, σ) where σ is a substitution and R = (H ′ ∧ φ′ −→
cn
i=1 F

′
i) is an

ordered clause such that:

• for all i ∈ {1, . . . , n}, dFiσemay = F ′i

• for all (inj-)event F ∈ H, either there exists F ′δ′ ∈ H ′ such that dFσesure = F ′ or there
exists i ∈ {1, . . . , n} such that dFσemay = F ′i

• φ′ |= φσ

• for all attacker, message and table facts F in H, Fσ is deducible from {F ∈ H ′ |
pred(F) ∈ Sp} under some φ′′ such that φ′ |= φ′′.

We denote R, σ |= % when (R, σ) is a solution of %.

The first item of the definition requires that premises of the query match the conclusion
of the clause after instantiation by σ. The second item states that the events in the query are
satisfied when either they occur in the hypotheses of the clause or directly in its conclusion.
Indeed, the semantics of the satisfiability of the query does not proscribe two events in the
conclusion and premises of the query to be matched by the same event in the trace. For
example, the query event(A)⇒ event(A) is always true.

Example 24. Let % = event(x,A(x′)) ∧ event(y,B(y′))⇒ event(z, C(x′, y′)) ∧ att1((x′, y′)) ∧
x′ 6= y′. Assume that a name a[] is in the initial knowledge of the attacker. We have R, σ |= %
with:

• R = s-event(o3[], C(a[], y1))∧y1 6= a[]∧att0(y1) −→ m-event(o1[], A(a[]))fm-event(o2[], B(y1))

65

• σ = {x 7→ o1[];x′ 7→ a[]; y 7→ o2[]; y′ 7→ y1; z 7→ o3[]}

Since we assume that a[] is in the initial knowledge of the attacker, we know that −→ att0(a[])
is amongst the rules (RInit). Using the rule allowing the intruder to change phases (Rap) and
the application of tuple from (Rf), we can build a partial derivation D of att1((a[], y1)) where
Fus(D) = att0(y1). I

The main procedure. The complete verification procedure, defined in Algorithm 2, starts
by generating the set of inductive lemmas Li from the queries in Q. It then generates the
set of allowed predicates Sp. Note that Sp does not gather the predicates that are in the
premises of the queries but only in their conclusion. Indeed, as mentioned in Section 4, facts
in the conclusion of the queries will be matched with hypotheses of Horn clauses. Hence, we
need to ensure the relation order between the facts in the hypotheses of the clauses and their
conclusion. Since transformation rules such as general redundancy preserves such properties
only on predicates in Sp, we need to include the predicates of the conclusion of the queries
inside Sp. The third and fourth steps of the algorithm consist of generating the initial clauses
and saturating them, yielding the set of ordered saturated clause Csat. These four steps are
in fact common to every verification procedure for correspondence queries (nested, injective,
simple). The final step consists of verifying each query in Q. Note that when we write return
φ with φ being a formula containing some quantifiers, we consider that the function returns
true if the formula is true, and false otherwise.

The verification function starts by solving the ordered clause, yielding the set Cs. We
distinguish whether the query % is in Li or not. Intuitively, when we try to prove the lemmas
in Li, we solve the ordered clause by considering the lemmas in Li as inductive hypothesis,
i.e. we apply saturateS

Sp
L∪R,Li({Rq},Csat). Once all lemmas in Li are proved, we can prove

the remaining queries by considering the lemmas in Li similarly to the lemmas in L, i.e. we
apply saturateS

Sp
L∪Li∪R,∅({Rq},Csat).

Theorem 4 indicates that for all derivations from the request clause, there exists a deriva-
tion of the same facts from the set Cs. Thus, by verifying that all rules in Cs satisfy the query,
we guarantee that the derivation corresponding to the concrete facts of the trace also satisfy
the query. The function verify as described in Algorithm 2 is non-deterministic due to the
existential checks. In the implementation, the pair (σ,Cs) is generated by continuation on the
fly until the algorithm finds one pair that verifies all conditions.

7.3 Nested queries

When verifying that an ordered clause R and a substitution σ are solution of a disjunct query
%, we intuitively verify that events in the conclusion of % occur before one of the facts in %’s
premises. However, proving a disjunct containing a nested query requires to order different
facts within the conclusion of the disjunct. This is not directly possible in our setup, even with
ordering functions in ordered clauses as they order facts from hypotheses in a clause w.r.t.
facts in its conclusion. Thus, to prove a nested query, we proceed in two steps as described in
the following example.

Example 25. Consider a query event(x,A(M1))⇒ event(y,B(M2)) event(z, C(M3)). We
start as if we are proving the simple correspondence query event(x,A(M1))⇒ event(y,B(M2))
hence

1. Saturating the set of saturated clauses Csat

66

Algorithm 2: Verification procedure for simple correspondence queries
input: An initial instrumented configuration CI , a set of instrumented lemmas L on

traces, a set of instrumented queries Q, a set of restrictions R

Function verify(%,Rq)
Data: % is a query of the form

∧n
i=1 Fi ⇒

∨m
j=1 ψj where ψjs are conjunctions of

facts and generic predicates
Data: Rq is an ordered clause

if % ∈ Li then
Cs := saturateS

Sp
L∪R,Li({Rq},Csat)

else
Cs := saturateS

Sp
L∪Li∪R,∅({Rq},Csat)

return ∃C′s completely covering Cs
∀R ∈ C′s
∃j ∈ {1, . . . ,m} and σ
R, σ |=

∧n
i=1 Fi ⇒ φj

/* Generation of the inductive lemmas and allowed predicates */
Li := {%ind | % ∈ Q ∧ %ind does not have > as conclusion}
S1 is the set of all predicates in the conclusions of queries in Q
S2 is the set of all predicates in L,Li,R
Sp := S1 ∪ S2 ∪ {atti | attj ∈ S1 ∧ i ≤ j} ∪ {tablei | tablej ∈ S1 ∧ i ≤
j} ∪ {m-event, s-event}

/* Generation of initial clauses */
κio := the smallest natural number such that all queries in Q are IO-κio-compliant
and all restrictions in R are fully IO-κio-compliant

C := CP(CI , κio) ∪ CA(CI)

/* Saturation */

Csat := saturate
Sp
L∪R,Li(C)

/* Verification */
return ∀% = (

∧n
i=1 Fi ⇒ ψ) ∈ Q ∪ Li

G1 := dF1emay, . . . , Gn = dFnemay

Rq := (G
[1 7→≤]
1 ∧ . . . ∧G[n7→≤]

n −→
cn
i=1Gi) /* The ordered clause */

verify(%,Rq)

67

2. Generating the ordered clause Rq = m-event(x,A(M1))δ −→ conj [m-event](x,A(M1)) with
δ = [1 7→ ≤]

3. Solving the ordered clause Cs = saturateS
Sp
L,Li({Rq},Csat)

In the verification of simple correspondence query, we would check that for all ordered clauses
R ∈ Cs, R, σ |= event(x,A(M1))⇒ event(y,B(M2)) for some substitution σ. In other words,
we check that R is of the form H ∧ s-event(yσ,B(M2σ))δ −→ conj [m-event](xσ,A(M1σ)).

To prove the nested query event(B(M2)) event(C(M3)), we use the substitution σ and
generate the following new request clause R′q:

H∧s-event(yσ,B(M2σ))δ∧m-event(yσ,B(M2σ))δ
′ −→ m-event(xσ,A(M1)σ)fm-event(yσ,B(M2σ))

where δ′ = δ ◦ [2 7→ ≤]. By adding m-event(yσ,B(M2σ))δ
′ in the hypothesis of the clause, we

request to find the derivations that trigger the event B(M2σ) at occurrence yσ. Moreover, by
also adding m-event(yσ,B(M2σ)) in the conclusion of the request clause, we will be able to
order the events of the derivation with respect to m-event(yσ,B(M2σ)).

The procedure then solves R′q resulting in a set C′s and checks the ordered clauses in
C′s against the query event(xσ,A(M1σ)) ∧ event(yσ,B(M2σ)) ⇒ event(zσ, C(M3σ))[2 7→≤] in
which the ordered fact event(zσ, C(M3σ))[27→≤] requires event(zσ, C(M3σ)) should occur at
the same time or before event(yσ,B(M2σ)). This additional condition allows us to ensure
that the nested query holds. I

In Example 25, we showed queries should allow conditions on the order between a fact of
the hypotheses and a fact of the conclusion. Thus, we extend the syntax of the queries by
allowing ordered facts. The satisfaction relation |= for an annotated formula is also extended
as follows: for all trace T , for all substitution σ and all tuples of steps τ̃ ,

(`i, T, (τ̃ , σ)) |= F δ,µ iff µ(τ̃ , σ) is defined, T, µ(τ̃ , σ) `i F and ∀i ∈ Domδ, µ(τ̃ , σ) δ(i) τi

We will call ordered queries the queries containing ordered facts.
We also extend the definition of disjunction query to ordered disjunct query and their

solutions (updating Definition 32) to take into account the ordering functions in the query.
To ease the reading, we highlight in red the modifications w.r.t. Definition 32.

Definition 33 (Solution of an ordered disjunct query, Subsume Definition 32). Let % =∧n
i=1 Fi ⇒ H ∧ φ be an ordered disjunct query. A solution of % is a triple (R, σ,M) where σ

is a substitution, R = (H ′ ∧ φ′ −→
cn
i=1 F

′
i) is an ordered clause, and M is a multiset of pairs

of ordered facts and ordering functions such that:

• {{F δ ∈ H | F is an (inj-)event }} = {{F δ | (F δ, δ′) ∈M}}

• for all i ∈ {1, . . . , n}, dFiσemay = F ′i

• for all (F δ, δ′) ∈ M, δ wo δ′ and either there exists a fact F ′ such that F ′δ′ ∈ H ′ and
dFσesure = F ′ or there exists i ∈ {1, . . . , n} such that dFσemay = F ′i and δ

′ = [i 7→ ≤]

• φ′ |= φσ

• for all attacker, message and table facts F δ in H, Fσ is deducible from {F ′ | F ′δ′ ∈
H ′ ∧ pred(F ′) ∈ Sp ∧ δ wo δ′} under some φ′′ such that φ′ |= φ′′.

68

We denote R, σ,M |= % when (R, σ,M) is a solution of %.

A solution (R, σ,M) of an ordered disjunct query % indicates that all events in the con-
clusion of the query % can be found in the hypotheses of the rule R after instantiation by σ.
However, since the query and the rule both contain ordering functions, we need to guarantee
that the ordering functions in R imply the ones in the query (δ wo δ′ in the definition). We
record in the multiset M the ordering function δ′ in R with whom the ordered event F δ from
the query was matched. For attacker, message and table facts, similarly to Definition 32, we
do not request that the fact after instantiation by σ directly occurs in the hypotheses but that
it is deducible from the hypotheses of R.

The main procedure The procedure follows the same initial steps as for simple correspon-
dence queries (Algorithm 2), i.e. generation of inductive lemmas, generation of set of allowed
predicates, generation and saturation of initial clauses. The procedure differs in the function
verify where nested queries has to be taken into account. The updated function verify is
displayed in Algorithm 3 and the parts related to nested queries are highlighted in red.

The beginning of the function is the same, i.e. the ordered clause Rq is solved yielding
the set of ordered clauses Cs. Then the procedure finds a set C′s completely covering Cs
such that all ordered clauses R = (H −→ C) must be solution of at least one disjunct of the
query (represented by j) with some substitution σ and some matching M. Since the notion of
ordered disjunct query does not include nested queries, we only keep the premises of the nested
queries inside the disjunct when searching for solutions: R, σ,M |=

∧n
i=1 Fi ⇒ ψj∧

∧`j
k=1 F

δk,j
k,j .

Note that when there is no nested query, i.e. `j = 0, the disjunct query R, σ,M |=
∧n
i=1 Fi ⇒

ψj exactly corresponds to the one considered in simple correspondence query (the multiset
M being ignored). When there are nested queries, i.e. `j ≥ 1, the procedure generates a
new ordered clause R′q and a new ordered query %′ that include the nested queries ψk,j and
recursively calls itself on (%′, R′q).

The generation of the new ordered clause R′q and query %′, described in the function
gen_nested, follows the ideas given in Example 25. More specifically, the premises Gk of the
nested queries Gδkk ψk are added in the conclusion and hypotheses of the ordered clause.
In the hypotheses of the ordered clause, the fact Gk is associated to the ordering function
δk[n+ k 7→ ≤]. The part [n+ k 7→ ≤] intuitively indicates that Gk should occur before itself.
This is obviously always true but it allows to keep track of the facts deriving Gk when solving
the ordered clause R′q.

Finally, to build the ordered query %′, we replace the nested relations Gδkk ψk with
ψ
δk[n+k 7→≤]
k σ but we add Gkσ in the premise of the query. The subquery ψδk[n+k 7→≤]

k indicates
that every fact in ψk has the ordering function δk[n + k 7→ ≤]. Once again, this intuitively
means that the facts in ψk should occur before the n+ k-th facts of the conclusion, i.e. Gkσ.

7.4 Injective queries

Checking simple correspondence queries or nested queries requires to show that each ordered
clause generated by the solving procedure is a solution of the query for some substitution. Note
that proving that ordered clauses are solutions of the query is done separately, i.e. ordered
clauses are independent of each other. This is reflected by the first item of Definition 10.

69

Algorithm 3: Updated function verify for nested correspondence queries
Function gen_nested(%, (H −→ C, σ,M))

Data: % is an ordered query of the form
∧n
i=1 Fi ⇒ ψ ∧

∧`
k=1G

δk
k ψk) where

ψjs are conjunctions of ordered facts and generic predicates
Data: (H −→ C, σ,M) is a solution of

∧n
i=1 Fi ⇒ ψ ∧

∧`
k=1G

δk
k

/* Generate the nested request clause and corresponding query */
Take (Gδ11 , δ

′
1), . . . , (Gδ`` , δ

′
`) ∈M

R′q := H ∧
∧`
k=1dG

δ′k[n+k 7→≤]

k emayσ −→ C f
c`
k=1dGkemayσ

%′ :=
∧n
i=1 Fiσ ∧

∧`
k=1Gkσ ⇒ ψσ ∧

∧`
k=1 ψ

δk[n+k 7→≤]
k σ

return R′q, %
′

Function verify(%,Rq)
Data: % is an ordered query of the form

∧n
i=1 Fi ⇒

∨m
j=1(ψj ∧

∧`j
k=1 F

δk,j
k,j ψk,j)

where ψjs are conjunctions of ordered facts and generic predicates
Data: Rq is an ordered clause

if % ∈ Li then
Cs := saturateS

Sp
L∪R,Li({Rq},Csat)

else
Cs := saturateS

Sp
L∪Li∪R,∅({Rq},Csat)

return ∃C′s completely covering Cs
∀R = (H → C) ∈ C′s
∃j ∈ {1, . . . ,m}, a substitution σ, and a matching M
R, σ,M |=

∧n
i=1 Fi ⇒ ψj∧

∧`j
k=1 F

δk,j
k,j and

if `j ≥ 1 then /* Nested queries */
R′q, %

′ = gen_nested(
∧n
i=1 Fi ⇒ ψj ∧

∧`j
k=1 F

δk,j
k,j ψk,j , (R, σ,M))

verify(%′, R′q)

However for injective queries, we additionally need to verify a global injective property on all
the solutions (item 2 and 3 of Definition 10).

Example 26. Consider the query inj1-event(x,A(M1)) ⇒ inj2-event(y,B(M2)). We start as
if we are proving the simple correspondence query event(x,A(M1))⇒ event(y,B(M2)), as in
Example 25:

1. Saturating the set of saturated clauses Csat

2. Generating the annotated clause Rq = m-event(x,A(M1))δ −→ conj [m-event](x,A(M1))
with δ = [1 7→ ≤]

3. Solving the annotated clause Cs = saturateS
Sp
L∪R,Li({Rq},Csat)

Once again, we check that all rules R in Cs are of the form H ∧ s-event(yσ,B(M2σ))δ −→

70

conj [m-event](xσ,A(M1σ)) for some σ,M and δ, i.e. R, σ,M |= event(x,A(M1))⇒ event(y,B(M2)).
For the purpose of this example, let us assume the Cs only contains two ordered clauses

R1 and R2, as follows:

• R1 = H1 ∧ s-event(yσ1, B(M2σ1))δ1 −→ conj [m-event](xσ1, A(M1σ1))

• R2 = H2 ∧ s-event(yσ2, B(M1σ2))δ2 −→ conj [m-event](xσ2, A(M1σ2))

Now consider a concrete trace T and two steps τ1, τ2 such that T, τi `i event(xσi, A(M1σi)
for i = 1, 2. Theorems 2 and 4 indicate the events event(yσ1, B(M2σ1)) and event(yσ2, B(M2σ2))
are respectively executed before event(xσ1, A(M1σ1)) and event(xσ2, A(M1σ2)), i.e. there ex-
ists τ ′1 and τ ′2 such that T, τ ′i `i s-event(yσi, B(M2σi)).

Therefore, when checking the query, we can consider the partial function µ = [(τ1, σ1) 7→
τ ′1; (τ2, σ2) 7→ τ ′2] for building the annotated query conclusion Ψ = inj2-event(y,B(M2))µ.
However, in order to satisfy the injectivity property of the query (items 2 and 3 of Definition 2),
we need to ensure that if τ1 6= τ2 then τ ′1 6= τ ′2, i.e. if the events event(xσ1, A(M1σ1)) and
event(xσ2, A(M1σ2)) do not occur at the same time then the events event(yσ1, B(M2σ1)) and
event(yσ2, B(M1σ2)) do not occur at the same time in the trace T .

Ordered clauses do not directly give precise indications on the steps on which the events
are satisfied. However, from Lemma 2, we can derive that the occurrence terms o in an event
event(o, ev) are unique in a trace, i.e. if two events with the same occurrence term are executed
in the trace then these two events are the same events and are necessarily executed at the
same time. Using this property, we can prove injectivity of the query by building the following
clause and by checking that it is not satisfiable:

H1 ∧H2 ∧ s-event(yσ1, B(M2σ1)) ∧ s-event(yσ2, B(M1σ2)) ∧ yσ1 = yσ2 ∧ xσ1 6= xσ2

−→
m-event(xσ1, A(M1σ1)fm-event(xσ2, A(M2, σ2))

In ProVerif 2.00, the injectivity check is also done by gathering the environment of
events (a notion similar to our occurrence terms) and by then checking that the formula
yσ1 = yσ2 ∧ xσ1 6= xσ2 is unsatisfiable. In this work, we build the above clause and use
the solving procedure to check whether the clause is satisfiable. This is strictly stronger as it
allows us to apply ProVerif lemmas during the solving procedure which could remove false
attacks. I

As illustrated in Example 26, the verification procedure needs to gather for each ordered
clauses in the set of solved clauses the substitution σ that satisfy the query. In the imple-
mentation, the set of solutions is built by continuation while verifying the non-injective query.
However, for sake of clarity, we present here the algorithm as if it first guesses the set of
solutions and second verifies that it is indeed a set of solutions. In Algorithm 4, we present
the updated function verify that takes as input the additional set Sol and verifies that Sol
is a set of solutions. Note that Sol is a set of tuples (R′, σ′, %′) where R′ is an ordered clause,
σ′ is a substitution, and %′ is an ordered disjunct query. In Example 26, we ignored %′ as the
query event(x,A(M1))⇒ event(y,B(M2)) does not contain any disjunction nor nested query.
However, in the general case, we need to know to which disjunct %′ the 3-tuple (R′, σ′,M) is
solution of for some matching M. As for the nested queries, we highlighted in Algorithm 4
the parts that were changed for injective queries.

71

Algorithm 4: Updated function verify for injective correspondence queries.
Function verify(%,Rq,Sol)

Data: % is an ordered query of the form
∧n
i=1 Fi ⇒

∨m
j=1(ψj ∧

∧`j
k=1 F

δk,j
k,j ψk,j)

where ψjs are conjunctions of ordered facts and generic predicates
Data: Rq is an ordered clause
Data: Sol is a set of tuples (R′, σ′, %′) where R′ is an ordered clause, σ′ is a

substitution, %′ is an ordered disjunct query.

if % ∈ Li then
Cs := saturateS

Sp
L∪R,Li({Rq},Csat)

else
Cs := saturateS

Sp
L∪Li∪R,∅({Rq},Csat)

return ∃C′s completely covering Cs
∀R = (H → C) ∈ C′s
∃j ∈ {1, . . . ,m}, a substitution σ, and a matching M
R, σ,M |=

∧n
i=1 Fi ⇒ ψj ∧

∧`j
k=1 F

δk,j
k,j and

if `j ≥ 1 then /* Nested queries */
R′q, %

′ := gen_nested(
∧n
i=1 Fi ⇒ ψj ∧

∧`j
k=1 F

δk,j
k,j ψk,j , (R, σ,M))

verify(%′, R′q,Sol)
else

(R, σ,
∧n
i=1 Fi ⇒ ψj) ∈ Sol

Algorithm 5 describes the function verify_inj that checks whether a set of solutions Sol
verifies the injective property of the query, as illustrated in Example 26. Note that the function
verify_inj also takes an integer n which was not mentioned in Example 26. Intuitively,
when the query contains a nested query, the different disjuncts in the set of solution Sol do
not necessarily have the same number of facts in their premises since the function gen_nested
generates new request clauses by adding facts in the premise (see Algorithm 3). However when
verifying the injective property, we should only consider the premise of the initial query. Note
that gen_nested only adds facts in the premise after (as a sequence) the initial facts, hence
if n is the number of facts in the premise of the initial query then we know that the first n
facts of a disjunct query’s premise from Sol are the ones corresponding to the initial query’s
premise. In Algorithm 5, we also rely on the function occn(ψ) to build the disequality in the
clause. This function takes an integer n and a conjunction of facts as arguments and returns
the tuple formed of occurrences of all injective events from the first n facts in the conjunction.
Formally, occn(

∧m
i=1 Fi) = (oi1 , . . . , oir) where i1, . . . , ir is the longest sequence of increasing

indices such that for all ` ∈ {1, . . . , r}, i` ≤ n and Fi` = injk`-event(oi` , ev`) for some k`, ev`.

Example 27. Consider the initial query % = inj1-event(x,A(M1)) ∧ att0(N) ⇒ inj2-event(y,
B(M2)) inj3-event(z, C(M3)). Before verifying the nested query, the function verify will
check the query %1 = inj1-event(x,A(M1)) ∧ att0(N) ⇒ inj2-event(y,B(M2)) hence yielding
solutions of the form (σ,H −→ m-event(x,A(M1))fatt0(N), %′). The initial query only contain-
ing two facts in its premises, we apply occn(·) with n = 2. Thus occ2(inj1-event(x,A(M1)) ∧

72

Algorithm 5: Function verify_inj checking injectivity of solutions.
Function verify_inj(Sol, n)

Data: Sol is a set of tuples (R′, σ′, %′) where R′ is an ordered clause, σ′ is a
substitution, %′ is a disjunct query.

Data: n represents the number of facts in the premise of the initial query

return ∀(H1 −→ C1, σ1,
∧n1
i=1 Fi,1 ⇒ ψ1), (H2 −→ C2, σ2,

∧n2
i=1 Fi,2 ⇒ ψ2) ∈ Sol

/* H1 −→ C1, H2 −→ C2, σ1, σ2, . . . are assumed to have been freshly
renamed */

∀injk1-event(o1, ev1) ∈ ψ1 ∪ {Fi,1}n1
i=n+1,

∀injk2-event(o2, ev2) ∈ ψ2 ∪ {Fi,2}n2
i=n+1

/* tests item 2 of Definition 4 */
if k1 = k2 then

o′1 := occn(
∧n1
i=1 Fi,1)

o′2 := occn(
∧n2
i=1 Fi,2)

Rq := (H1σ1 ∧H2σ2 ∧ o1σ1 = o2σ2 ∧ o′1σ1 6= o′1σ2 −→ C1 f C2)

saturateS
Sp
L∪Li∪R,∅({Rq},Csat) = ∅

and
∀injk1-event(o1, ev1) ∈ ψ1 ∪ {Fi,1}n1

i=n+1,
∀injk2-event(o2, ev2) ∈ ψ1 ∪ {Fi,1}n1

i=n+1

/* both events are from the same query
∧n1
i=1 Fi,1 ⇒ ψ1 */

/* tests item 3 of Definition 4 */
if k1 = k2 then

(o1σ1, ev1σ1) = (o2σ1, ev2σ1)

att0(N)) = x. However, when checking the nested query, the function verify will call
gen_nested(%,R) with R an ordered clause, yielding the query %2 = inj1-event(x,A(M1))σ′∧
att0(N)σ′ ∧ inj2-event(y,B(M2))σ′ ⇒ inj3-event(z, C(M3))δ[3 7→≤]σ′ for some σ′, δ. Note that
in %2, even though we have the presence of the injective event inj2-event(y,B(M2))σ′, the
injectivity of the query should only be checked w.r.t. inj1-event(x,A(M1))σ′. This is re-
flected when applying occn(·) with n = 2 since occ2(inj1-event(x,A(M1))σ′ ∧ att0(N)σ′ ∧
inj2-event(y,B(M2))σ′) = xσ′ which does not include the occurrence yσ′. I

Algorithm 6 presents the complete procedure for verifying correspondence queries. In
particular, it subsumes Algorithm 2. As previously mentioned, the algorithm is presented
as a non-deterministic procedure that guesses the set of solution Sol and verifies both the
non injective aspect of the query (verify(%,Rq,Sol)) and the injective property of the query
(verify_inj(Sol, n)).

The soundness of the algorithm is given in the following theorem.

Theorem 6. Let C = E , P,A be an initial configuration and CI be is associated initial instru-
mented configuration. Let L be a sets of lemmas. Let R be a set of restrictions. Let Q be a
set of correspondence queries.

If the following holds:

73

Algorithm 6: prove(CI ,L,R,Q): Verification procedure for injective nested corre-
spondence queries
input: An initial instrumented configuration CI , a set of instrumented lemmas L on

traces, a set of instrumented queries Q

/* Generation of the inductive lemmas and allowed predicates */
Li := {%ind | % ∈ Q ∧ %ind does not have > as conclusion}
S1 is the set of all predicates in the conclusions of queries in Q
S2 is the set of all predicates in L,Li,R
Sp := S1 ∪ S2 ∪ {atti | attj ∈ S1 ∧ i ≤ j} ∪ {tablei | tablej ∈ S1 ∧ i ≤
j} ∪ {m-event, s-event}

/* Generation of initial clauses */
κio := the smallest natural number such that all queries in Q are IO-κio-compliant
and all restrictions in ∇ are fully IO-κio-compliant

C := CP(CI , κio) ∪ CA(CI)

/* Saturation */

Csat := saturate
Sp
L∪R,Li(C)

/* Verification */
return ∀% = (

∧n
i=1 Fi ⇒

∨m
j=1 ψj) ∈ Q ∪ Li

∃Sol /* Guess of a set of solutions */
G1 := dF1emay, . . . , Gn = dFnemay

Rq := (G
[1 7→≤]
1 ∧ . . . ∧G[n 7→≤]

n −→
cn
i=1Gi) /* The request clause */

verify(%,Rq,Sol) and verify_inj(Sol, n)

• for all % ∈ L ∪Q ∪R, names(%) ⊆ E

• for all % ∈ L, (`o, trace(C,−→o))|R |= %

• prove(CI , [L]i, [R]i, [Q]i) terminates and returns true

then for all % ∈ Q, (`o, trace(C,−→o)|R) |= %.

7.5 Correspondence lemmas on bitraces

When proving a setQ of queries on bitraces, we rely in fact on the same procedure prove(CI ,L,Q)
in which we only modify the set of initial clauses C and the set of saturated clauses Csat. Fol-
lowing Theorem 3, the set of initial clauses C is such that Cc(CI , nIO) ⊆ C ⊆ C′P(CI , κio) ∪
C′A(CI) where κio is the smallest natural number such that all queries in Q are IO-κio-
compliant. We denote by proveB(CI ,L,Q) the procedure for verifying the set of queries
on bitraces Q in the initial biconfiguration CI .

The soundness of the algorithm is given in the following theorem.

74

Theorem 7. Let C = E , P,A be an initial biconfiguration and CI be is associated initial
instrumented biconfiguration. Let L be a sets of ProVerif lemmas. Let Q be a set of
correspondence queries on bitraces.

If the following holds:

• for all % ∈ L ∪Q, names(%) ⊆ E

• for all % ∈ L, (`o′ , trace(C,−→o′)) |= %

• proveB(CI , [L]i′ , [Q]i′) terminates and returns true

then for all % ∈ Q, (`o′ , trace(C,−→o′)) |= %.

References

[ABB+05] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar, P. Han-
kes Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Mödersheim, D. von
Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò, and L. Vigneron.
The AVISPA Tool for the automated validation of internet security protocols and
applications. In K. Etessami and S. Rajamani, editors, 17th International Confer-
ence on Computer Aided Verification, CAV’2005, volume 3576 of Lecture Notes in
Computer Science, pages 281–285, Edinburgh, Scotland, 2005. Springer.

[BAF08] Bruno Blanchet, Martín Abadi, and Cédric Fournet. Automated verification of
selected equivalences for security protocols. J. Log. Algebr. Program., 75(1):3–51,
2008.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models and
reference implementations for the TLS 1.3 standard candidate. In IEEE Symposium
on Security and Privacy (S&P’17), pages 483–503, May 2017.

[Bla09] Bruno Blanchet. Automatic verification of correspondences for security protocols.
Journal of Computer Security, 17(4):363–434, 2009.

[Bla14] Bruno Blanchet. Automatic verification of security protocols in the symbolic model:
The verifier proverif. In Foundations of Security Analysis and Design VII - FOSAD
2012/2013 Tutorial Lectures, volume 8604 of Lecture Notes in Computer Science,
pages 54–87. Springer, 2014. https://proverif.inria.fr.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and proverif. Foundations and Trends in Privacy and Security, 1(1-2):1–
135, 2016.

[Bla17] Bruno Blanchet. Symbolic and computational mechanized verification of the AR-
INC823 avionic protocols. In 30th IEEE Computer Security Foundations Sympo-
sium (CSF’17), pages 68–82, Santa Barbara, CA, USA, August 2017. IEEE.

[BSCS17] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. Proverif 1.97:
Automatic cryptographic protocol verifier, user manual and tutorial, July 2017.

75

https://proverif.inria.fr

[CB13] Vincent Cheval and Bruno Blanchet. Proving more observational equivalences
with proverif. In David Basin and John Mitchell, editors, Proceedings of the 2nd
International Conference on Principles of Security and Trust (POST’13), volume
7796 of Lecture Notes in Computer Science, pages 226–246, Roma, Italy, March
2013. Springer Berlin Heidelberg.

[CCK12] Rohit Chadha, Ştefan Ciobâcă, and Steve Kremer. Automated verification of equiv-
alence properties of cryptographic protocols. In Programming Languages and Sys-
tems —Proceedings of the 21th European Symposium on Programming (ESOP’12),
volume 7211, pages 108–127. Springer, 2012.

[CCT18] Vincent Cheval, Véronique Cortier, and Mathieu Turuani. A little more conversa-
tion, a little less action, a lot more satisfaction: Global states in proverif. In Pro-
ceedings of the 31st IEEE Computer Security Foundations Symposium (CSF’18),
Oxford, UK, July 2018. IEEE Computer Society Press.

[CGG19] Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. Belenios: A Simple
Private and Verifiable Electronic Voting System. Springer, 2019.

[CGT18] Véronique Cortier, David Galindo, and Mathieu Turuani. A formal analysis of the
neuchâtel e-voting protocol. In 3rd IEEE European Symposium on Security and
Privacy (EuroSP’18), pages 430–442, London, UK, April 2018.

[CKR18] Vincent Cheval, Steve Kremer, and Itsaka Rakotonirina. Deepsec: Deciding equiv-
alence properties in security protocols - theory and practice. In Proceedings of
the 39th IEEE Symposium on Security and Privacy (S&P’18), pages 525–542, San
Francisco, CA, USA, May 2018. IEEE Computer Society Press.

[CS13] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An analysis of
ballot secrecy. Journal of Computer Security, 21(1):89–148, 2013.

[KBB17] Nadim Kobeissi, Karthikeyan Bhargavan, and Bruno Blanchet. Automated ver-
ification for secure messaging protocols and their implementations: A symbolic
and computational approach. In 2017 IEEE European Symposium on Security and
Privacy, EuroS&P 2017, Paris, France, April 26-28, 2017, pages 435–450. IEEE,
2017.

[KNB19] Nadim Kobeissi, Georgio Nicolas, and Karthikeyan Bhargavan. Noise explorer:
Fully automated modeling and verification for arbitrary noise protocols. In IEEE
European Symposium on Security and Privacy, EuroS&P 2019, Stockholm, Sweden,
June 17-19, 2019, pages 356–370. IEEE, 2019.

[Per16] Trevor Perrin. The noise protocol framework, 2016.

[Pra77] V. R. Pratt. Two easy theories whose combination is hard. Technical report, 1977.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analy-
sis of Diffie-Hellman protocols and advanced security properties. In Stephen Chong,
editor, 25th IEEE Computer Security Foundations Symposium, CSF 2012, Cam-
bridge, MA, USA, June 25-27, 2012, pages 78–94. IEEE, 2012.

76

Index

A
Sp, allowed predicates, 39
Ψ, annotated query conclusion, 16
Ψ, annotated query conclusion with partial functions removed, 16
α, atomic formula, 13
attκ(M), attacker fact, 13
att′κ(M,M ′), bi-attacker fact, 19

C
clause satisfying Sp, 56
CA(C0), attacker clauses for correspondence queries, 37
C′A(C0), attacker clauses for equivalence, 41
CP(C0, κio), protocol clauses for correspondence queries, 37
C′P(C0, κio), protocol clauses for equivalence, 41
Cstd, standard clauses, 51
Cc(CI , κio), clauses for correspondence queries on bitraces, 43
Ce(T), clauses representing events satisfied in traces, 40
C′e(T), clauses representing events satisfied in bitraces, 42
compatible sequences of occurrence labels and patterns, 22
complete coverage of clauses, 64
condenseSSp(C), condensing ordered clauses, 61
condenseSp(C), condensing clauses, 52
configuration
E , P,A, initial configuration, 10
κ, E ,P, T ,A, configuration, 9
κ, ρ,P, T ,A,Λ, instrumented configuration, 21
ρ, P,A, initial instrumented configuration, 22cn

i=1 Fi, conjunction fact, 55
convergence

T↓↑i, convergence of an instrumented bitrace T , 24
T↓↑, convergence of a bitrace T , 19∧n

i=1 Fi ⇒ ψ, correspondence query, 13

D
data compliant trace, 28
M
==⇒

dr
, data reconstruction, 27

M
==⇒

d,k
, data deconstruction, 27

M
==⇒

r
, data constructor, 27

data(T, τ), set of terms already deconstructed/deconstructed up to step τ , 27
deducible fact F from F1, . . . , Fn under φ, 63
def(g), definition of destructor function symbol g by rewrite rules, 8
derivation, 39
Difference for equivalence

diff[D,D′], expressions, 18

77

diff[M,M ′], terms, 18
disjunct query, 65
disjunctive normal form, 17

E
D ⇓ V , evaluation of an expression, 8
D ⇓′ (U, σ, φ), evaluation on open terms, 36
event(o, ev), event fact with occurrence, 22
m-event(o, ev), may-event fact, 37
s-event(o, ev), sure-event fact, 37
event′(ev, ev′), bi-event fact, 19

F
F,G, facts, 13
Fs(D), solved facts in a partial derivations, 47
Fs(D), solved facts in partial ordered derivations, 59
Fusel, unselectable facts, 45
Fus(D), unsolved facts and formulas in partial derivations, 47
Fus(D), unsolved facts and formulas in partial ordered derivations, 59
φ, formula, 13
φ1 |= φ2, φ1 implies φ2, 38
Fc, constructor function symbols, 7
Fdata, data constructor function symbols, 8
Fd, destructor function symbols, 7
Fe, event function symbols, 7
Ftbl, table function symbols, 7

G
[[|P,O, I|]]κHρ, generation of clauses for biprocess, 41
[[P,O, I]]κHρ, generation of clauses for correspondence query, 37
geq/2, greater or equal predicate for natural number, 9

I
IH%(T, τ̃), inductive predicate, 35
HypL,Li(T, τ̃), inductive predicate for correspondence query, 53
Hyp′L,Li(T, τ̃), inductive predicate for correspondence query on bitrace, 54
<ind, inductive order, 34
%ind, the ProVerif inductive lemma obtained from %, 34
initial instrumented configuration associated to an initial configuration, 22
IO-κ-compliant, 30

M
maxstep(T), maximal step in T , 11
msgκ(M,N), message fact, 13
msg′κ(M,N,M ′, N ′), bi-message fact, 19
minus/1, minus function symbol for natural numbers, 9

N
n-strict ordering functions, 60

78

N , set of names, 7
nat/1, predicate for terms being natural number, 9

O
occn(ψ), occurrence of a conjunction of facts, 72
ordered clause, 55
ordered derivation, 56
ordered disjunct query, 68
F δ, ordered fact, 55
ordered query, 68
δ, ordering function, 55
δ<, strict ordering function, 57

P
partial derivation, 47
partial ordered derivation, 59
precise, event for precise actions, 44
πfi , i-th projection of data constructor function symbol f , 8
ProVerif lemma, 20

R
dψesureδ , adding ordering function δ on dψesure, 60
[%]i, replacement of % into an equivalent instrumented query, 24
dψemay, replacement of events with may-events in ψ, 51, 65
dψesure, replacement of events with sure-events in ψ, 51, 65

S
satisfaction

(`i, T, (τ̃ , σ)) |= F δ,µ, instrumented satisfaction of annotated ordered facts, 68
(`, T, (τ̃ , σ)) |= Ψ, satisfaction of the annotated query conclusion Ψ, 16
(`,S) |= %, satisfaction of the query %, 16
(`∀,`∃,S) |= %, restricted satisfaction of query, 26
T,Sp, κio ` D, satisfaction of the derivation D, 39
T, τ `o F , satisfaction of facts, 14
T, τ `o′ F , satisfaction of bi-facts, 19
T, τ `i F , instrumented satisfaction of facts, 22
T, τ `i m-event(o, ev), instrumented satisfaction of may-event fact, 37
T, τ `i s-event(o, ev), instrumented satisfaction of sure-event fact, 37
T, τ `κIO F , IO satisfaction of the fact F , 31
T, τ `κIO′ F , IO satisfaction of bi-facts, 32
T, τ `κIO m-event(o, ev), IO satisfaction of may-event fact, 37
T, τ `κIO s-event(o, ev), IO satisfaction of sure-event fact, 37

satisfaction of correspondence queries on bitraces, 19
saturateS

Sp
L,Li(C,Csat), saturation of ordered clauses, 61

saturate
Sp
L,Li(C), saturation of clauses, 52

sel(H −→ C), selection function, 45
Semantics relation

`−→i′ , on instrumented biconfigurations, 24

79

`−→o′ , on biconfigurations, 18
`−→i, on instrumented configurations, 23
`−→o, on configurations, 9

steps(T), set of steps in T , 11
Σ, signature, 7
simplified clauses, 52
simplifyS

Sp
L,Li(C), simplification of ordered clauses, 61

simplify
Sp
L,Li(C), simplification of clauses, 52

solution
R, σ |= %, solution of disjunct queries, 65
R, σ,M |= %, solution of ordered disjunct queries, 68

subsumption
(H1 ∧ φ1 → C1) w (H2 ∧ φ2 → C2), subsumption of clauses, 38
(H1 ∧ φ1 → C1) wo (H2 ∧ φ2 → C2), subsumption of ordered clauses, 57
δ wo δ′, subsumption of ordering functions, 57

succ/1, successor function symbol for natural numbers, 9

T
tableκ(tbl(M1, . . . ,Mn)), table fact, 13
table′κ(tbl(M1, . . . ,Mn), tbl(M ′1, . . . ,M

′
n)), bi-table fact, 19

F, temporal facts, 13
T [τ], τ -th configuration in the trace T , 11
trace(A0,→), set of trace from A0 by →, 11
τ -th step of T , 11
T(→), traces by →, 11
traceκIO(C,−→i), IO-κ-compliant traces from C, 31
T [τ]

I-App(f,M1,...,Mn)−−−−−−−−−−−−→i T [τ + 1], transition corresponding to the application of the rule
I-App at step τ , 27

U
unselectable facts, 45

V
V, set of variables, 7

W
well originated clauses, 53

Z
zero/0, constant 0 for natural numbers, 9

80

A Proof of Lemma 8

The completeness of our restrictions is easy to prove.

Lemma 15. Let CI = ρ, P,A be an initial instrumented configuration. Let κ ∈ N. Let ψ be
an IO-κ-compliant correspondence query such that names(ψ) ⊆ dom(ρ).

We have (`i, trace(CI ,−→i)) |= ψ implies (`nIO,`i, tracenIO(CI ,−→i)) |= ψ.

Proof. Note that the relation `nIOIO implies `i, i.e. for all traces T , for all steps τ , for all facts
F , T, τ `nIOIO F implies T, τ `i F . Moreover, we also have tracenIOIO (CI ,−→i) ⊆ trace(CI ,−→i).
Hence, the result holds.

Proving the soundness of our restrictions is much harder. To do so, we introduce an
intermediate satisfaction relation on facts, denoted `is, and that is defined as follows: T, τ `is
F when T [τ] = n, ρ,P, T ,A,Λ and

• if F = attm(M ′) then m = n, M ′ = Mρ and M ∈ A for some M

• if F = tablem(tbl(M ′1, . . . ,M
′
m)) then m = n, M ′1 = M1ρ, . . . , M ′m = Mmρ and

tbl(M1, . . . ,Mm) ∈ T for some M1, . . . ,Mm

• T, τ `i F otherwise

The satisfaction relation `is is an intermediate relation between `i and `nIOIO that will
allow us to prove the soundness of our restrictions in several stages.

Given a trace T , let us denote steps(T) = {1, . . . ,maxstep(T)}. Given a query ψ =
(F1 ∧ . . . ∧ Fn ⇒ φ) and a trace T , let us denote Prem(ψ, T) = {(τ1, . . . , τn, σ) | τ1, . . . , τn ∈
steps(T) and σ is a ground substitution with dom(σ) = vars(F1, . . . , Fn)}. Moreover, given
a satisfaction relation `, given P ⊆ Prem(ψ, T) and given an annotated formula Φ w.r.t.
(n,maxstep(T)) such that Φ = φ, let us denote (`, T,P) |= (F1, . . . , Fn),Φ when:

1. for all (τ1, . . . , τn, σ) ∈ P, if T, τi ` Fiσ for i = 1 . . . n then there exists σ′ such that
Fiσ = Fiσ

′ for i = 1 . . . n and (`i, T, (τ1, . . . , τn, σ)) |= Φσ′.

2. for all injk-event(ev)µ occurring in Φ, µ(τ1, . . . , τn, σ) = µ(τ ′1, . . . , τ
′
n, σ

′) implies that
τj = τ ′j for all j such that Fj = injkj -event(evj) for some kj , evj

3. for all injk1-event(ev1)µ1 and injk2-event(ev2)µ2 occurring in Φ, k1 = k2 implies µ1 = µ2

Remark 14. This notation allows us to talk more precisely of the different elements in Def-
inition 4 that describes when a query is satisfied. Formally, given an initial instrumented
configuration CI and a correspondence query ψ = (F1 ∧ . . . ∧ Fn ⇒ φ), the definition of
(`i, trace(CI ,−→i)) |= ψ can be rewritten as follows: for all T ∈ trace(CI ,−→i), there exists
an annotated formula Φ w.r.t. (n,maxstep(T)) such that Φ = φ and (`i, T,Prem(ψ, T)) |=
(F1, . . . , Fn),Φ.

Similarly, the definition (`is,`i, trace(CI ,−→i)) |= ψ can be rewritten as follows: for all
T ∈ trace(CI ,−→i), there exists an annotated formula Φ w.r.t. (n,maxstep(T)) such that Φ = φ
and (`is, T,Prem(ψ, T)) |= (F1, . . . , Fn),Φ. I

81

Remark 15. In the definition of (`,T) |= ψ for some query ψ, some set of traces T and some
satisfaction relation `, we can always consider that the annotated formula Φ associated to a
trace T ∈ T assigns to a fact F occurring in φ a partial function µ that is defined only on
satisfiable facts. Formally, we can request that if Fµ occurs in Φ then for all (τ1, . . . , τn, σ) ∈
Prem(ψ, T), if µ(τ1, . . . , τn, σ) is defined then there exist σ′ such that T, µ(τ1, . . . , τn, σ) `i Fσ′.
Such restriction trivially preserves (`,T) |= ψ. I

As previously mentioned, we will prove the soundness of our restrictions in several stages.
All these stages will typically consist of mapping a trace from one set of traces to another in
a way that preserves the satisfaction of the query. In the following definition, we describe the
properties we will ensure every time we create these mappings of traces. In Lemma 17, we
show the soundness of our mappings w.r.t. the correspondence query.

Definition 34. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let `1,`2 be
two intermediate satisfaction relations on facts. Let two sets of intermediate traces T1,T2 ⊆
trace(CI ,−→i). Let nIO ∈ N.

We say that (`1,T1) is nIO-mapped by (`2,T2) when for all T1 ∈ T1, for all finite sets
S ⊆ {(τ, F) ∈ steps(T1)×F | T1, τ `1 F}, there exist T2 ∈ T2, a mapping γ from steps(T2) to
steps(T1) and a mapping θ from S to steps(T2) such that:

For all τ, τ1, τ2 ∈ steps(T2)

1. for all τ ∈ steps(T2), for all F ∈ F, if F is an attacker fact attn(M) with n < nIO or a
table, message or event fact then T2, τ `i F implies T1, γ(τ) `i F

2. for all τ1, τ2 ∈ steps(T2), τ1 ≤ τ2 implies γ(τ1) ≤ γ(τ2)

3. for all events F1, F2 ∈ F, if T2, τ1 `i F1 and T2, τ2 `i F2 and γ(τ1) = γ(τ2) then τ1 = τ2

4. for all (τ, F) ∈ S, T2, θ(τ, F) `2 F

5. for all (τ1, F1), (τ2, F2) ∈ S, if F1, F2 are both events and θ(τ1, F1) = θ(τ2, F2) then
(τ1, F1) = (τ2, F2)

We say that (`1,T1) is mapped by (`2,T2) when the condition n < nIO in item 1 is replaced by
n ∈ N (i.e. the property should hold for all phases which is similar to considering nIO =∞).

Mappings between pairs of satisfaction relations and set of traces is transitive and stable
by union.

Lemma 16. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N. Let
`1,`2,`3 be three intermediate satisfaction relations on facts. Let the sets of intermediate
traces T1,T2,T

′
1,T

′
2,T3 ⊆ trace(CI ,−→i). We have:

• if (`1,T1) is nIO-mapped by (`2,T2) and (`2,T2) is nIO-mapped by (`3,T3) then (`1

,T1) is nIO-mapped by (`3,T3)

• if (`1,T1) is nIO-mapped by (`2,T2) and (`1,T
′
1) is nIO-mapped by (`2,T

′
2) then (`1

,T1 ∪ T′1) is nIO-mapped by (`2,T2 ∪ T′2).

• if (`1,T1) is nIO-mapped by (`2,T2) then (`1,T1) is n′IO-mapped by (`2,T
′
2) for all

T′2 ⊇ T2 and all n′IO ≤ nIO.

82

Proof. Proving the stability by union is direct from the definition. The proof of transitivity
is slightly more complex.

Consider T1 ∈ T1 and a finite set S ⊆ {(τ, F) ∈ steps(T1)×F | T1, τ `1 F}. Since (`1,T1)
is mapped by (`2,T2), we know that there exists T2 ∈ T2, a mapping γ1 from steps(T2)
to steps(T1) and a mapping θ1 from S to steps(T2) that satisfied the properties stated in
Definition 34.

Let us define S′ = {(θ1(τ, F), F) | (τ, F) ∈ S}. By definition of θ, we know that
(θ1(τ, F), F) ∈ steps(T2)×F. Moreover, by item 4 of Definition 34, we know that T2, θ(τ, F) `2

F . Hence, we can use the set S′ and the trace T2 to obtain from (`2,T2) being mapped by
(`3,T3) that there exist T3 ∈ T3, a mapping γ2 from steps(T3) to steps(T2) and a mapping
θ2 from S′ to steps(T3) that satisfied the properties stated in Definition 34.

Let us define γ = [τ 7→ γ1(γ2(τ)) | τ ∈ steps(T3)] and θ = [(τ, F) 7→ θ2(θ1(τ, F), F) |
(τ, F) ∈ S]. We now prove that γ and θ satisfy the desired properties with the trace T3.

Let τ, τ1, τ2 ∈ steps(T3).

1. Let F ∈ F be an attacker fact attn(M) with n < nIO or a table, message, or event fact.
If T3, τ `i F then we know from (`2,T2) being mapped by (`3,T3) that T2, γ2(τ) `i F .
From (`1,T1) being mapped by (`2,T2), we deduce that T1, γ1(γ2(τ)) `i F and so
T1, γ(τ) `i F .

2. Since γ1 and γ2 preserve order relations, we deduce that τ1 ≤ τ2 implies γ1(γ2(τ1)) ≤
γ1(γ2(τ1)) and so γ(τ1) ≤ γ(τ2)

3. Let F1, F2 ∈ F be two event facts such that T3, τ1 `i F1 and T3, τ2 `i F2 and γ(τ1) =
γ(τ2). Since (`2,T2) being mapped by (`3,T3) (item 1), we deduce that T2, γ2(τ1) `i F1

and T2, γ2(τ2) `i F2. Thus with (`1,T1) being mapped by (`2,T2) (item 3), we deduce
that γ(τ1) = γ(τ2) implies γ2(τ1) = γ2(τ2). By applying again item 3 with γ2, we obtain
that τ1 = τ2.

4. Let (τ, F) ∈ S. We already showed that (θ1(τ, F), F) ∈ S′. Hence by item 4 on θ2, we
obtain that T3, θ2(θ1(τ, F), F) `3 F and so T3, θ(τ, F) `3 F

5. Let (τ1, F1), (τ2, F2) ∈ S such that F1, F2 are both events and θ(τ1, F1) = θ(τ2, F2).
By definition of θ, we have θ2(θ1(τ1, F1), F1) = θ2(θ1(τ2, F2), F2). Moreover, since
θ1(τ1, F1), θ1(τ2, F2) ∈ S′, we can apply item 5 on θ2 to obtain that θ1(τ1, F1) =
θ1(τ2, F2). By applying item 5 on θ1, we conclude that τ1 = τ2.

This allows us to conclude that (`1,T1) is mapped by (`3,T3).

We can now show how mappings allow us to prove the soundness of our restrictions.

Lemma 17. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N. Let
ψ = (F1 ∧ . . . Fn ⇒ φ) be a IO-nIO-compliant correspondence query such that names(ψ) ⊆
dom(ρI).

Let `1,`2 be two intermediate satisfaction relations on facts. Let two sets of intermediate
traces T1,T2 ⊆ trace(CI ,−→i). If (`2,`i,T2) |= ψ and (`1,T1) is nIO-mapped by (`2,T2) then
for all T ∈ T1, for all finite sets P ⊆ Prem(ψ, T), there exists an annotated formula Φ w.r.t.
(n,maxstep(T)) such that Φ = φ and (`1, T1,P) |= (F1, . . . , Fn),Φ.

83

Proof. Consider a trace T1 ∈ T1 and a finite set of P ⊆ Prem(ψ, T1). Note that all elements in
P are of the form (τ1, . . . , τn, σ) where τ1, . . . , τn ∈ steps(T1) and σ is a ground substitution
such that dom(σ) = vars(F1, . . . , Fn). With P being finite, we can thus build a finite set
S0 = {(τ1, F1σ); . . . ; (τn, Fnσ) | (τ1, . . . , τn, σ) ∈ P}. To match the hypotheses of Definition 34,
we can remove from S0 the pairs that do not correspond to the satisfaction of a fact, i.e. we
build S = {(τ, F) ∈ S0 | T1, τ `1 F}.

Since (`1,T1) is nIO-mapped by (`2,T2), we know by definition that there exist T2 ∈ T2,
a mapping γ from steps(T2) to steps(T1) and a mapping θ from S to steps(T2) that satisfy
the properties stated in Definition 34.

By hypothesis, we also know that (`2,`i,T2) |= ψ hence there exists an annotated formula
Φ′ w.r.t. (n,maxstep(T2)) such that Φ′ = φ and (`2, T2,Prem(ψ, T2)) |= (F1, . . . , Fn),Φ′. We
build a new annotated formula Φ w.r.t. (n,maxstep(T1)) from Φ′ by replacing every occurence
Fµ

′ in Φ′ by Fµ where µ is defined as follows:

• dom(µ) ⊆ P

• for all (τ1, . . . , τn, σ) ∈ P, µ(τ1, . . . , τn, σ) is defined if and only if µ′(θ(τ1, F1σ), . . . , θ(τn,
Fnσ), σ) is defined

• for all (τ1, . . . , τn, σ) ∈ P, if µ′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ) is defined, then µ(τ1, . . . , τn, σ) =
γ(µ′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ)).

By construction, Φ = Φ′ = φ. Hence, it remains to show that (`1, T1,P) |= (F1, . . . , Fn),Φ.
We prove the three properties of (`1, T1,P) |= (F1, . . . , Fn),Φ separately:

1. Let (τ1, . . . , τn, σ) ∈ P. Assume that T1, τi `1 Fiσ for all i = 1 . . . n. Thus (τi, Fiσ) ∈ S
for all i = 1 . . . n. Let us consider τ ′1, . . . , τ ′n such that τ ′i = θ(τi, Fiσ) for all i = 1 . . . n.
By item 4 of Definition 34, we know that T2, θ(τi, Fiσ) `2 Fiσ for all i = 1 . . . n. Since
(`2, T2,Prem(ψ, T2)) |= Φ′ holds, we deduce that there exists σ′ such that Fiσ = Fiσ

′

for all i = 1 . . . n and (`i, T2, (τ
′
1, . . . , τ

′
n, σ)) |= Φ′σ′.

We now prove that (`i, T1, (τ1, . . . , τn, σ)) |= Φσ′. To do so, let us look at any oc-
currence Fµ in Φ. By definition, we know that the corresponding occurrence in Φ′ is
Fµ

′ where µ(τ1, . . . , τn, σ) is defined if and only if µ′(τ ′1, . . . , τ ′n, σ) is defined. More-
over, if (`i, T2, (τ

′
1, . . . , τ

′
n, σ)) |= Fσ′µ

′ then it implies that µ′(τ ′1, . . . , τ ′n, σ) is defined
and T2, µ

′(τ ′1, . . . , τ
′
n, σ) `i Fσ′. Since ψ is IO-nIO-compliant, we know that if F is an

attacker fact atti(M) then i < nIO. Thus, we can apply item 1 of Definition 34 which
implies T1, γ(µ′(τ ′1, . . . , τ

′
n, σ)) `i Fσ′. Since µ(τ1, . . . , τn, σ) = γ(µ′(τ ′1, . . . , τ

′
n, σ)), we

deduce (`i, T1, (τ1, . . . , τn, σ)) |= Fσ′µ.

Moreover, to cover nested queries, we also need to prove that order between steps
are preserved. Thus consider a second occurrence F ′′µ

′′ of a fact in Φ′ such that
µ′′(τ ′1, . . . , τ

′
n, σ) is defined and µ′(τ ′1, . . . , τ ′n, σ) ≤ µ′′(τ ′1, . . . , τ

′
n, σ). Once again by con-

struction of Φ, we know that the corresponding occurrence of F ′′µ′′ in Φ is the annotated
fact F ′′µ′′′ where µ′′′(τ1, . . . , τn, σ) = γ(µ′′(τ ′1, . . . , τ

′
n, σ)). By item 2 of Definition 34,

µ′(τ ′1, . . . , τ
′
n, σ) ≤ µ′′(τ ′1, . . . , τ

′
n, σ) implies γ(µ′(τ ′1, . . . , τ

′
n, σ)) ≤ γ(µ′′(τ ′1, . . . , τ

′
n, σ))

and so µ(τ1, . . . , τn, σ) ≤ µ′′′(τ1, . . . , τn, σ).

This conclude the proof of (`i, T1, (τ1, . . . , τn, σ)) |= Φσ′.

84

2. Consider an injective event injk-event(ev)µ occurring in Φ such that µ(τ1, . . . , τn, σ) =
µ(τ ′1, . . . , τ

′
n, σ

′). By definition of Φ, we know that the same occurrence of the injective
event in Φ′ is injk-event(ev)µ

′ where µ(τ1, . . . , τn, σ) = γ(µ′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ))
and µ(τ ′1, . . . , τ

′
n, σ

′) = γ(µ′(θ(τ ′1, F1σ
′), . . . , θ(τ ′n, Fnσ), σ′)). Since µ(τ1, . . . , τn, σ) is

defined then both µ′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ) and µ′(θ(τ ′1, F1σ
′), . . . , θ(τ ′n, Fnσ), σ′)

are defined meaning that there exist σ′′, σ′′′ such that T2, µ
′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ) `i

injk-event(ev)σ′′ and T2, µ
′(θ(τ ′1, F1σ

′), . . . , θ(τ ′n, Fnσ), σ′) `i injk-event(ev)σ′′′. Thus by
item 3 of Definition 34, we deduce that µ′(θ(τ1, F1σ), . . . , θ(τn, Fnσ), σ) = µ′(θ(τ ′1, F1σ

′),
. . . , θ(τ ′n, Fnσ), σ′). But since (`2,T2) |= ψ, we deduce that θ(τj , Fjσ) = θ(τ ′j , Fjσ

′) for
all j such that Fj is an injective event. Thus, by item 5 of Definition 34, we conclude
that τj = τ ′j and Fjσ = Fjσ

′, which allows us to conclude.

3. The third property is direct by construction of Φ.

This concludes the proof of (`1, T1,P) |= (F1, . . . , Fn),Φ.

Lemma 17 does not allow us to directly prove that a correspondence query is satisfied by
the set of traces T1. Indeed, the lemma tells us that for all traces T of T1, for all finite subsets
of P ⊆ Prem(ψ, T), there exists an annotated formula Φ that verifies the correspondence query,
i.e. (`1, T1,P) |= (F1, . . . , Fn),Φ. However, to show that T satisfies the correspondence query
ψ, we need to show that there exists an annotated formula Φ such that (`1, T1,Prem(ψ, T)) |=
(F1, . . . , Fn),Φ. Ideally, we would like to take P = Prem(ψ, T) and apply Lemma 17 to
conclude. But this is impossible since Prem(ψ, T) is infinite and P must be finite in Lemma 17.
The next lemma solves this issue.

Lemma 18. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let ψ = (F1 ∧ . . .∧
Fn ⇒ φ) be a correspondence query such that names(ψ) ⊆ dom(ρI). Let T ⊆ trace(CI ,−→i).
Let ` be an intermediate satisfaction relation on facts.

If for all T ∈ T, for all finite sets P ⊆ Prem(ψ, T), there exists an annotated formula Φ
w.r.t. (n,maxstep(T)) such that Φ = φ and (`, T,P) |= (F1, . . . , Fn),Φ then (`,`i,T) |= ψ.

Proof. Consider a trace T ∈ T. In this proof, we annotate all injective events of φ from 1 to
niev where niev is the number of injective events in φ. Thus, an injective event occurring in
φ will be denoted injk-event(ev)i. Similarly, we also annotate all facts in φ different from an
injective event from 1 to nfact where nfact is the number of facts in φ different from an injective
event. For an annotated formula Φ w.r.t. (n,maxstep(T)), we also annotate the injective events
and facts different from injective events in a similar fashion, meaning that an injective event
occurring in Φ will be denoted injk-event(ev)i,µ where i ∈ {1, . . . , niev} and µ is the partial
function from Prem(ψ, T) to steps(T) as defined in Section 2.3.1. These annotations allow
us to more easily talk about a specific occurrence of an injective event in φ or an annotated
formula Φ. Finally, given an annotated formula Φ, we define the functions αΦ and βΦ such
that for all i ∈ {1, . . . , niev}, αΦ(i) = µ where injk-event(ev)µi occurs in Φ for some ev, k; and
for all i ∈ {1, . . . , nfact}, βΦ(i) = µ where F i,µ occurs in Φ for some fact different from an
injective event.

Finally, given (τ1, . . . , τn, σ) ∈ Prem(T, ψ), we denote by Sol(τ1, . . . , τn, σ) the largest set of
tuples (i1, . . . , iniev) such that (i1, . . . , iniev) ∈ Sol(τ1, . . . , τn, σ) when there exists an annotated
formula Φ w.r.t. (n,maxstep(T)) such that Φ = φ, (`, T, {(τ1, . . . , τn, σ)}) |= (F1, . . . , Fn),Φ
and for all k ∈ {1, . . . , niev},

85

• if αΦ(k)(τ1, . . . , τn, σ) is defined then αΦ(k)(τ1, . . . , τn, σ) = ik; and

• if αΦ(k)(τ1, . . . , τn, σ) is not defined then ik = 0.

Intuitively, Sol(τ1, . . . , τn, σ) represents all the possible ways to match the injective events
from the query to the trace in order to satisfy the query. Note that by definition of annotated
formulae, (i1, . . . , iiev) ∈ Sol(τ1, . . . , τn, σ) implies 0 ≤ ik ≤ maxstep(T) for all k. Thus,
for all (τ1, . . . , τn, σ) ∈ Prem(T, ψ), Sol(τ1, . . . , τn, σ) is finite. Moreover, by our hypothesis,
we know that there exists an annotated formula Φ w.r.t. (n,maxstep(T)) such that Φ = φ
and (`, T, {(τ1, . . . , τn, σ)}) |= (F1, . . . , Fn),Φ. Therefore, for all (τ1, . . . , τn, σ) ∈ Prem(T, ψ),
Sol(τ1, . . . , τn, σ) is finite and non empty.

We define the binary relation ∼ on Prem(T, ψ) such that (τ1, . . . , τn, σ) ∼ (τ ′1, . . . , τ
′
n, σ

′) if
and only if Sol(τ1, . . . , τn, σ) = Sol(τ ′1, . . . , τ

′
n, σ

′) and τj = τ ′j for all j ∈ {1, . . . , n}. Notice that
the quotient set Prem(T, ψ)/ ∼ is finite (to be precise it contains at most 2(maxstep(T)+1)niev ×
(maxstep(T) + 1)n elements). We consider the set Q defined by taking a representative of each
equivalence class in Prem(T, ψ)/ ∼.

Since Prem(T, ψ)/ ∼ is finite then Q is also finite, meaning that we can applying our
hypothesis on Q. This allows us to deduce that there exists an annotated formula Φ0 w.r.t.
(n,maxstep(T)) such that Φ0 = φ and (`, T,Q) |= (F1, . . . , Fn),Φ0.

For all (τ1, . . . , τn, σ) ∈ Prem(T, ψ), if (τ1, . . . , τn, σ
′) ∈ Q such that (τ1, . . . , τn, σ) ∼

(τ1, . . . , τn, σ
′) (the representative exists and is unique) then we know from (`, T,Q) |=

(F1, . . . , Fn),Φ0 that there exists (i1, . . . , iiev) ∈ Sol(τ1, . . . , τn, σ
′) such that αΦ0(k)(τ1, . . . , τn,

σ′) = ik for all k ∈ {1, . . . , niev}. Moreover, since Sol(τ1, . . . , τn, σ) = Sol(τ1, . . . , τn, σ
′), we

also know that there exists an annotated formula Φ1 such that (`, T, {(τ1, . . . , τn, σ)}) |=
(F1, . . . , Fn),Φ1 and αΦ1(k)(τ1, . . . , τn, σ) = αΦ0(k)(τ1, . . . , τn, σ

′) for all k ∈ {1, . . . , niev}.
Let us denote the annotated formula Φ1 by AF (τ1, . . . , τn, σ).

We can now build that annotated formulae Φ that will cover completely Prem(T, ψ) as the
annotated formula that satisfies the following property: For all (τ1, . . . , τn, σ) ∈ Prem(T, ψ),
if Φ′ = AF (τ1, . . . , τn, σ) then

• for all k ∈ {1, . . . , niev}, αΦ(k)(τ1, . . . , τn, σ) = αΦ′(k)(τ1, . . . , τn, σ)

• for all k ∈ {1, . . . , nfact}, βΦ(k)(τ1, . . . , τn, σ) = βΦ′(k)(τ1, . . . , τn, σ)

Intuitively, the value of the partial function on (τ1, . . . , τn, σ) for an occurrence of a fact
(injective or not) in Φ is the same as the value of the partial function on (τ1, . . . , τn, σ) for the
same occurrence in AF (τ1, . . . , τn, σ).

It remains to prove that (`, T,Prem(ψ, T)) |= (F1, . . . , Fn),Φ. We consider the three items
of the definition separately:

1. Let (τ1, . . . , τn, σ) ∈ Prem(T, ψ). Assume that T, τi `i Fiσ for all i = 1 . . . n. By defi-
nition, we know that (`, T, {(τ1, . . . , τn, σ)}) |= (F1, . . . , Fn),Φ1 where Φ1 = AF (τ1, . . . ,
τn, σ). Therefore, there exists σ′ such that Fiσ = Fiσ

′ for i = 1 . . . n and (`i, T, (τ1, . . . ,
τn, σ)) |= Φ1σ

′. Since for all k ∈ {1, . . . , niev}, αΦ(k)(τ1, . . . , τn, σ) = αΦ1(k)(τ1, . . . , τn, σ)
and for all k′ ∈ {1, . . . , nfact}, βΦ(k′)(τ1, . . . , τn, σ) = βΦ1(k′)(τ1, . . . , τn, σ), we deduce
that (`i, T, (τ1, . . . , τn, σ)) |= Φσ′.

2. Let injk-event(ev)i,µ occurring in Φ, i.e. i ∈ {1, . . . , niev}. Assume that µ(τ1, . . . , τn, σ) =
µ(τ ′1, . . . , τ

′
n, σ

′). By definition of αΦ, µ = αΦ(i). Hence, αΦ(i)(τ1, . . . , τn, σ) = αΦ(i)(τ ′1,

86

. . . , τ ′n, σ
′). Moreover, by definition of Φ, we know that αΦ(i)(τ1, . . . , τn, σ) = αΦ1(i)(τ1,

. . . , τn, σ) with Φ1 = AF (τ1, . . . , τn, σ). By definition of AF (τ1, . . . , τn, σ), we de-
duce that there exists σ′′ such that (τ1, . . . , τn, σ

′′) ∈ Q and αΦ1(i)(τ1, . . . , τn, σ) =
αΦ0(i)(τ1, . . . , τn, σ

′′) and so αΦ(i)(τ1, . . . , τn, σ) = αΦ0(i)(τ1, . . . , τn, σ
′′). Similarly,

there exists σ′′′ such that (τ ′1, . . . , τ
′
n, σ

′′′) ∈ Q such that αΦ(i)(τ ′1, . . . , τ
′
n, σ

′) = αΦ0(i)(τ ′1,
. . . , τ ′n, σ

′′′).

Therefore, we obtain that αΦ0(i)(τ1, . . . , τn, σ
′′) = αΦ0(i)(τ ′1, . . . , τ

′
n, σ

′′′). Since (`
, T,Q) |= (F1, . . . , Fn),Φ0 and (τ1, . . . , τn, σ

′′) ∈ Q and (τ ′1, . . . , τ
′
n, σ

′′′) ∈ Q, we can
conclude that τj = τ ′j for all j ∈ {1, . . . , n} such that Fj is an injective event.

3. Let two injective events injk1-event(ev1)i1,µ1 and injk2-event(ev2)i2,µ2 occurring in Φ
with k1 = k2. We need to show that µ1 = µ2, i.e. αΦ(i1) = αΦ(i2). Since (`
, T,Q) |= (F1, . . . , Fn),Φ0, we know that αΦ0(i1) = αΦ0(i2). Let (τ1, . . . , τn, σ) ∈
Prem(T, ψ). By definition of Φ, we know αΦ(i1)(τ1, . . . , τn, σ) = αΦ1(i1)(τ1, . . . , τn, σ)
and αΦ(i2)(τ1, . . . , τn, σ) = αΦ1(i2)(τ1, . . . , τn, σ) where Φ1 = AF (τ1, . . . , τn, σ). More-
over, by definition ofAF (τ1, . . . , τn, σ), we know there exists σ′ such that (τ1, . . . , τn, σ

′) ∈
Q, αΦ1(i1)(τ1, . . . , τn, σ) = αΦ0(i1)(τ1, . . . , τn, σ

′) and αΦ1(i2)(τ1, . . . , τn, σ) = αΦ0(i2)(τ1,
. . . , τn, σ

′). Since αΦ0(i1) = αΦ0(i2), we deduce that αΦ(i1)(τ1, . . . , τn, σ) = αΦ(i2)(τ1,
. . . , τn, σ). Hence we conclude that αΦ(i1) = αΦ(i2).

This concludes the proof that for all traces T ∈ T, there exists an annotated formula Φ w.r.t.
(n,maxstep(T)) such that Φ = φ and (`, T,Prem(ψ, T)) |= (F1, . . . , Fn),Φ. Therefore, we
conclude that (`,`i,T) |= ψ.

By direct application of Lemmas 17 and 18, we obtain the following corollary.

Corollary 1. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N. Let
ψ = (F1 ∧ . . . Fn ⇒ φ) be an IO-nIO-compliant correspondence query such that names(ψ) ⊆
dom(ρI).

Let `1,`2 be two intermediate satisfaction relations on facts. Let two sets of intermediate
traces T1,T2 ⊆ trace(CI ,−→i). If (`2,`i,T2) |= ψ and (`1,T1) is nIO-mapped by (`2,T2) then
(`1,`i,T1) |= ψ.

A.1 (`i, trace(CI ,−→i)) is mapped by (`is, trace(CI ,−→i))

Lemma 19. Let CI = ρI , PI ,AI be an initial instrumented configuration. (`i, trace(CI ,−→i))
is mapped by (`is, trace(CI ,−→i)).

Proof. Let T1 ∈ trace(CI ,−→i). We need to prove that for all finite sets S ⊆ {(τ, F) ∈
steps(T1) × F | T1, τ `i F}, there exist T2 ∈ trace(CI ,−→i), a mapping γ from steps(T2)
to steps(T1) and a mapping θ from S to steps(T2) that satisfy the properties stated in Defi-
nition 34.

We prove this result by induction on |S|. However, for our inductive hypothesis, we need to
reenforce the properties required on θ. Let us denote Sall = {(τ, F) ∈ steps(T1)× F | T1, τ `i
F}. First, instead of θ being a mapping from S to steps(T2), we ask θ to be a mapping
from Sall to steps(T2). Second, item 4 remains unchanged on S (i.e. for all (τ, F) ∈ S,
T2, θ(τ, F) `is F) but is extended to the whole domain of θ as follows: for all (τ, F) ∈ Sall,
T2, θ(τ, F) `i F . Note this additional condition is not in conflict when restricted to S since

87

T2, θ(τ, F) `is F implies T2, θ(τ, F) `i F . Third, item 5 applies not only to S but to the whole
set Sall, i.e. for all (τ1, F1), (τ2, F2) ∈ Sall, if F1, F2 are both events and θ(τ1, F1) = θ(τ2, F2)
then (τ1, F1) = (τ2, F2).

Moreover, in the rest of the proof, we will say items 4 and 5 when talking about the
corresponding reenforced properties stated above.

Base case |S| = 0: We directly conclude by taking T2 = T1, the identity mapping for γ
and the mapping [(τ, F) 7→ τ | (τ, F) ∈ Sall] for θ.

Inductive step |S| > 0: In such a case, S = {(τ0, F0)}∪S′ for some τ0, F0, S
′. By applying

our inductive hypothesis on S′, we obtain a trace T ′2 ∈ trace(CI ,−→i), a mapping γ′ from
steps(T ′2) to steps(T1) and a mapping θ′ from Sall to steps(T ′2) that satisfy the inductive
properties.

Let us do a case analysis on F0:

• Case F0 = event(o, ev) or F0 = injk-event(ev) or F0 = msgi(M,N): by definition of `is,
T ′2, τ0 `i F0 if and only if T ′2, τ0 `is F0.

Let us consider T2 = T ′2 and γ = γ′. In such a case, items 1, 2 and 3 directly hold since
γ′ satisfies the inductive properties. Moreover, by taking θ = θ′, we also deduce that
item 4 and 5 hold for θ. Indeed, by definition of S, we know that T1, τ0 `i F0. Hence
since θ′ satisfies item 4 on S′ and T ′2, we have T ′2, θ(τ0, F0) `i F0. Finally, since T2 = T ′2
and T ′2, τ0 `i F0 if and only if T ′2, τ `is F0, we conclude.

• Case F0 = tablei(tbl(M
′
1, . . . ,M

′
m)): Let us look at the configuration T ′2[maxstep(T

′
2)] =

n, ρ,P, T ,A,Λ. If n < i then we consider the trace on which we apply i − n times
the phase rule I-Phase at the end of T ′2, i.e. T2 = T ′2[0] −→∗i T ′2[maxstep(T

′
2)] −→∗i

i, ρ,P ′, T ,A,Λ for some P ′. If n ≥ i, then we consider T2 = T ′2.

In both cases, we define γ as the mapping γ′[maxstep(T
′
2) + j 7→ maxstep(T

′
2) | j ∈

{1, . . . , i − n}]. (When n ≥ i, this definition gives us γ = γ′.) Intuitively, all the steps
that we added at the end of T ′2 in T2 are mapped to maxstep(T

′
2). First, by construction,

we trivially have that γ satisfies item 2 since it holds for γ′. Second, since we only added
possibly some instances of the phase I-Phase, we deduce that that for all facts F , for
all steps τ , if T2, τ,`i F and F is an event, injective event or message predicates then
τ ≤ maxstep(T

′
2). Thus, item 3 holds for γ since it holds for γ′. Third, if T2, τ `i F then

either τ ≤ maxstep(T
′
2) and in such a case we have γ(τ) = γ′(τ) and T2, γ

′(τ, F) `i F , or
τ > maxstep(T

′
2) and F is necessarily an attacker and table lookup predicates since we

only added some instances of the phase rule I-Phase. In such a case, by definition of
`i, we deduce that T2,maxstep(T

′
2) `i F . This allows us to conclude that item 1 holds

for γ.

We now define θ. First, for all (τ, F) ∈ Sall \ {(τ0, F0)}, we define θ(τ, F) = θ′(τ, F).
For (τ0, F0), we need to find a step τ ′0 such that T2, τ

′
0 `is F0. By definition of S,

T1, τ0 `i F0. Since item 4 holds for θ′, we deduce that T ′2, θ′(τ0, F0) `i F0. Thus there ex-
ists tbl(M1, . . . ,Mn) ∈ T (T ′2[θ′(τ0, F0)]) such that tbl(M1, . . . ,Mn)ρ = tbl(M ′1, . . . ,M

′
n).

Since the semantics rules ensure that the set of elements inserted in tables can only grow
and by construction of T2 (i.e. the phase at step maxstep(T2) in T2 is greater or equal to
i), we deduce that there exists τ ′0 ≥ θ′(τ0, F0) such that T2, τ

′
0 `is F0. Thus, we define

θ(τ0, F0) = τ ′0. By construction, we obtain that θ satisfies item 4. Moreover, since F0 is
not an event fact, we directly deduce that item 5 holds for θ since it holds for θ′.

88

• Case F0 = atti(M
′): Since θ′ satisfies item 4, we deduce that T ′2, θ′(τ0, F0) `i F0.

Let us denote τ ′0 = θ′(τ0, F0). By definition of `i, we know that there exist M and
T ′2[τ ′0] −→∗i C = i, ρ,P, T ,A,Λ only by the rules I-App, I-New and I-Phase such that
M ′ = Mρ and M ∈ A. W.l.o.g., we can assume that T ′2[τ ′0] −→∗i C′ −→∗i C where
T ′2[τ ′0] −→∗i C′ consists of k applications of only the rules I-App and I-New (k possibly
being 0), and C′ −→∗i C consists only of applications of the rule I-Phase. Note that
since the rules I-App and I-New only increase the attacker knowledge, we have that
A = T ′2[τ ′0] ∪ AM for some AM .

We build T2 by inserting the rules applied in T ′2[τ ′0] −→∗i C′ in the trace T ′2 between the
transitions T ′2[τ ′0] and T ′2[τ ′0 + 1], and possibly adding some rule Phase at the end of
the trace if the phase of T ′2[maxstep(T

′)] is strictly smaller then i (similarly to the case
where F0 was a table lookup predicate). Formally, we build the following trace T2:

T ′2[0]
`1−→i T

′
2[1]

`2−→i . . .
`τ ′0−−→i T

′
2[τ ′0] −→∗i C′

`τ ′0+1

−−−→i C1

`τ ′0+2

−−−→i . . .
`τ ′0+N−−−−→i CN −→∗i C′′

where N = maxstep(T
′
2) − τ ′0, only the rule I-Phase is applied in CN −→∗i C′′, the phase

of C′′ is greater than i and for all j ∈ {1, . . . , N}, if T ′2[τ ′0 + j] = i′, ρ′,P ′, T ′,A′,Λ′ then
Cj = i′, ρ′,P ′, T ′,A′ ∪ AM ,Λ′.
By construction and more specifically since we only added instances of I-App, I-New
and I-Phase rules, we obtain that for all F ∈ F,

– for all τ ≤ τ ′0, T ′2, τ `i F if and only if T2, τ `i F ; and T ′2, τ `is F implies T2, τ `is F
– for all maxstep(T

′
2) ≥ τ > τ ′0, T ′2, τ `i F if and only if T2, τ +k `i F ; and T ′2, τ `is F

implies T2, τ + k `is F .
– for all maxstep(T2) ≥ τ > maxstep(T

′
2) + k, T2, τ `i F implies T ′2,maxstep(T

′
2) `i F

– if F is an event fact and T2, τ `i F then τ ≤ τ ′0 or maxstep(T
′
2) + k ≥ τ > τ ′0 + k.

– sinceM ∈ A (and soM ∈ A(T [τ ′0 +k+j]) for all j > 0) and since the phase of C′′ is
greater than i, we know that there exists a step τ1 ≥ τ ′0 + k such that T2, τ1 `is F0.

We conclude by building γ and θ as follows:

γ(τ) =


γ′(τ) if τ ≤ τ ′0
γ′(τ ′0) if τ ′0 < τ ≤ τ ′0 + k
γ′(τ − k) if τ ′0 + k < τ ≤ maxstep(T

′
2) + k

γ′(maxstep(T
′
2)) if maxstep(T

′
2) + k < τ

θ(τ, F) =


τ1 if (τ, F) = (τ0, F0)
θ′(τ, F) if (τ, F) ∈ Sall \ {(τ0, F0)} and θ′(τ, F) ≤ τ ′0
θ′(τ, F) + k if (τ, F) ∈ Sall \ {(τ0, F0)} and θ′(τ, F) > τ ′0

A.2 (`is, trace(CI ,−→i)) is nIO-mapped by (`is, tracenIOIO (CI ,−→i))

In the traces of tracenIOIO (CI ,−→i), we consider our two main restrictions, that are data compli-
ance and IO-nIO-compliance. To show the mapping of (`is, trace(CI ,−→i)) by (`is, tracenIOIO (CI ,
−→i)), we will need to transform the traces by applying several instances of the I-App, I-Msg,

89

I-Out and I-In rules. Thanks to Lemma 16, we know that our mappings are transitive and
stable by union, meaning that we can show first show mapping for our very small transforma-
tions and then combine them by multiple instance of Lemma 16.

Lemma 20. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let T ∈ trace(CI ,−→i

). Let τ0 ∈ steps(T). Consider the trace T ′ build by inserting an application of the I-App rule
at the step τ0. Formally, T ′ is defined as follows:

T [0]
`1−→i T [1]

`2−→i . . .
`τ0−−→i T [τ0]

I-App(f,M1,...,Mm)−−−−−−−−−−−−→i C0
`τ0+1−−−→i C1

`τ0+2−−−→i . . .
`τ0+N−−−−→i CN

where N = maxstep(T) − τ0, the application of T [τ0]
I-App(f,M1,...,Mm)−−−−−−−−−−−−→i C yields the term M

(i.e. f(M1, . . . ,Mm) ⇓ M) and for all j ∈ {0, . . . , N}, if T [τ0 + j] = i′, ρ′,P ′, T ′,A′,Λ′ then
Cj = i′, ρ′,P ′, T ′,A′ ∪ {M},Λ′.

We have that (`is, {T}) is mapped by (`is, {T ′}).

Proof. Let S be a finite set such that S ⊆ {(τ, F) ∈ steps(T)× F | T, τ `is F}. Let us define
the following mapping γ and θ:

For all τ ∈ steps(T ′),

γ(τ) =

{
τ if τ ≤ τ0

τ − 1 if τ > τ0

For all (τ, F) ∈ S,

θ(τ, F) =

{
τ if τ ≤ τ0

τ + 1 if τ > τ0

Let us now prove that γ and θ both satisfies the properties stated in Definition 34. First notice
that item 2 trivially holds. Moreover, for all τ ∈ steps(T ′), for all F ∈ F, if T ′, τ `i F and
τ ≤ τ0 then we trivially have that T, γ(τ) `i F . Otherwise, if T ′, τ `i F and τ > τ0 then we
know that T ′[τ] is the same configuration as T [τ−1] except that A(T ′[τ]) = A(T [τ−1])∪{M}.
Hence, if F is an attacker fact attn(N ′) then T ′, τ `i F implies T ′[τ] −→∗i C = i′, ρ′,P ′, T ′,A′,Λ′
with N ′ = Nρ′ and N ∈ A′. Since M1, . . . ,Mm ∈ A(T [τ0]) and τ > τ0, we have T [τ −
1]

I-App(f,M1,...,Mm)−−−−−−−−−−−−→i T [τ] −→∗i C which allow us to conclude that T, τ − 1 `i F . When F is
not an attacker fact, the result directly holds since for all τ > τ0, T (T ′[τ]) = T (T [τ − 1]) and
if T ′[τ − 1]

`−→i T
′[τ] with ` an event or message label then T [τ − 2]

`−→i T [τ − 1]. This allow
us to conclude that item 1 holds. For item 3, it suffices to notice that the only case where
γ(τ1) = γ(τ2) and τ1 6= τ2 is when τ1 = τ0 and τ2 = τ0 + 1. But no event fact F satisfies
T, τ0 + 1 `i F hence the result holds.

The properties on θ are proved in a similar way: For all (τ, F) ∈ S, if τ ≤ τ0 then we
directly have that T ′, τ `is F . Moreover, if τ > τ0 then we know that T [τ − 1]

`−→i T [τ]

implies T ′[τ]
`−→i T

′[τ + 1] with T ′[τ + 1] being the same configuration as T [τ] except that
A(T ′[τ + 1]) = A(T [τ]) ∪ {M}. Thus, T, τ `is F implies T ′, τ + 1 `is F and so item 4 holds.
Finally, for item 5, it suffices to notice that if T, τ `is F1 and T, τ `is F2 with F1, F2 two
events facts then F1 = F2. Hence if θ(τ1, F1) = θ(τ2, F2) then τ1 = τ2 by construction of θ
and so F1 = F2.

Lemma 21. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N. Let

T ∈ trace(CI ,−→i). Let τ0 ∈ steps(T) such that T [τ0]
msg(N [],M)−−−−−−−→i T [τ0 + 1] by application

of the rule I-I/O such that N ∈ AI and the phase of T [τ0] is n ≥ nIO. Consider the trace

90

T ′ build by replacing the application of the rule I-I/O by an application of the rule I-Out
followed by an application of the rule I-In (this is allowed since N ∈ AI). Formally, T ′ is
defined as follows:

T [0]
`1−→i T [1]

`2−→i . . .
`τ0−−→i T [τ0]

msg(N [],M)−−−−−−−→i C
msg(N [],M)−−−−−−−→i C1

`τ0+2−−−→i . . .
`τ0+k−−−→i Ck

where k = maxstep(T)− τ0, the transition T [τ0]
msg(N [],M)−−−−−−−→i C is an application of the I-Out

rule, the transition C msg(N [],M)−−−−−−−→i C1 is an application of the I-In rule and for all j ∈ {1, . . . , k},
if T [τ0 + j] = i′, ρ′,P ′, T ′,A′,Λ′ then Cj = i′, ρ′,P ′, T ′,A′ ∪ {M ′},Λ′ with M ′ρ′ = M .

We have that (`is, {T}) is nIO-mapped by (`is, {T ′}).

Proof. Let S be a finite set such that S ⊆ {(τ, F) ∈ steps(T)× F | T, τ `is F}. Let us define
the following mapping γ and θ:

For all τ ∈ steps(T ′),

γ(τ) =


τ if τ ≤ τ0

τ0 + 1 if τ ∈ {τ0 + 1; τ0 + 2}
τ − 1 if τ > τ0 + 2

For all (τ, F) ∈ S,

θ(τ, F) =

{
τ if τ ≤ τ0

τ + 1 if τ > τ0

Let us now prove that γ and θ both satisfies the properties stated in Definition 34. First
notice that item 2 trivially holds. Moreover, for all τ ∈ steps(T ′), for all F ∈ F such that F
is not an attacker fact atti(L) with i ≥ n, if T ′, τ `i F and τ ≤ τ0 then we trivially have that
T, γ(τ) `i F . Furthermore, for τ > τ0, since the phase of T [τ0] is n ≥ nIO, we deduce that
F is not an attacker fact. Thus, if τ ∈ {τ0 + 1; τ0 + 2} then F is either msgn(N [],M) or a
table fact. But T (T [τ0 + 1]) = T (T ′[τ]) hence T, γ(τ) `i F . Finally, if τ > τ0 + 2, we know
that T ′[τ − 1]

`−→i T
′[τ] implies T [τ − 2]

`−→i T [τ − 1] with T (T [τ − 1]) = T (T ′[τ]). Hence,
T, τ − 1 `i F and so item 1 holds. For item 3, the only possible problematic cases occur when
γ(τ1) = γ(τ2) = τ0 + 1, meaning that τ1, τ2 ∈ {τ0 + 1; τ0 + 2}. But for theses steps, there is no
event F such that T, τ1 `i F . Thus, item 3 holds.

The properties on θ are proved in a similar way: For all (τ, F) ∈ S, if τ ≤ τ0 then we
directly have that T ′, τ `is F . Moreover, if τ > τ0 then we know that T [τ − 1]

`−→i T [τ]

implies T ′[τ]
`−→i T

′[τ + 1] with T ′[τ + 1] being the same configuration as T [τ] except that
A(T ′[τ + 1]) = A(T [τ]) ∪ {M ′}. Thus, T, τ `is F implies T ′, τ + 1 `is F and so item 4 holds.
Finally, for item 5, it suffices to notice that if T, τ `is F1 and T, τ `is F2 with F1, F2 two
events facts then F1 = F2. Hence if θ(τ1, F1) = θ(τ2, F2) then τ1 = τ2 by construction of θ
and so F1 = F2.

Lemma 22. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let T ∈ trace(CI ,−→i

). Let τ0 ∈ steps(T) such that T [τ0]
msg(N,M)−−−−−−→i T [τ0 + 1] by application of the rule I-Out.

Consider the trace T ′ build by adding after the I-Out rule an instance of the I-Msg rule with
the same label msg(N,M). Formally, T ′ is defined as follows:

T [0]
`1−→i . . .

`τ0−−→i T [τ0]
msg(N,M)−−−−−−→i T [τ0 + 1]

msg(N,M)−−−−−−→i T [τ0 + 1]
`τ0+2−−−→i . . .

`τ0+k−−−→i T [τ0 + k]

91

where k = maxstep(T)− τ0 and the transition T [τ0 + 1]
msg(N,M)−−−−−−→i T [τ0 + 1] is an application

of the I-Msg rule.
We have that (`is, {T}) is mapped by (`is, {T ′}).

Proof. Let S be a finite set such that S ⊆ {(τ, F) ∈ steps(T)× F | T, τ `is F}. Let us define
the following mapping γ and θ:

For all τ ∈ steps(T ′),

γ(τ) =

{
τ if τ ≤ τ0 + 1
τ − 1 if τ > τ0 + 1

For all (τ, F) ∈ S,

θ(τ, F) =

{
τ if τ ≤ τ0 + 1
τ + 1 if τ > τ0 + 1

Since the trace T ′ contains exactly the same configurations as T with one configuration being
"duplicated", that is T [τ0 +1], the proof of γ and θ satisfying the desired properties is a direct
application of their definition.

Lemma 23. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N.
(`is, trace(CI ,−→i)) is nIO-mapped by (`is, tracenIOIO (CI ,−→i)).

Proof. Thanks to Lemma 16, we only need to show how we transform a trace T ∈ trace(CI ,−→i)
into a trace T ′ ∈ tracenIOIO (CI ,−→i) by only using the transformations described in Lemmas 20,
21, and 22.

First, we look at the greater natural numberN in T and we insert the transitions
I-App(zero)−−−−−−−→i

. . .
I-App(succ,N−1)−−−−−−−−−−−→i at the beginning of the trace (using the transformation described in

Lemma 20), yielding a trace T1. Second, we remove in T1 all applications of the rule I-I/O on
a channel from AI at a phase n ≥ nIO by successive application of the transformation from
Lemma 21, thus yielding a trace T2. Third, after all applications of the rule I-Out in T2, we
add an application of the I-Msg with the same message and channel, i.e. the transformation
described in Lemma 22, thus yielding a trace T3.

It remains to make T3 data-compliant. This is done by applying successively the following
transformations by going through the steps in increasing order:

• When the τ -th step of T3 is a transition
msg(N,M)−−−−−−→i by application of the rule I-Out or a

transition
I-App(f,M1,...,Mm)−−−−−−−−−−−−→i yielding the message M with f not being a data construc-

tion symbol or a projection of a data construction symbol, then we insert after the τ -th
step the necessary transitions to deconstruct/reconstruct M , yielding a trace T4 such
that T4[τ] = T3[τ] and T4[τ]

M
==⇒

dr
T4[τ ′] for some τ ′. Note that the added transitions

are only applications of the rule I-App with data constructor function symbols or pro-
jections of a data constructor function symbol. Hence these additions correspond to the
transformation described in Lemma 20.

• When the τ -th step of T3 is a phase transition, we consider the terms in attacker knowl-
edge A(T3[τ]) = {M1, . . . ,Mm} that we order by increasing size, i.e. i ≤ j implies
|Mi| ≤ |Mj |. Then we insert after the τ -th step the necessary transitions to obtain a
trace T4 such that T4[τ] = T3[τ] and T4[τ]

M1==⇒
r
. . .

Mm===⇒
r
T4[τ ′] for some τ ′. Once again,

92

note that the added transitions are only applications of the rule I-App with data con-
structor function symbols or projections of a data constructor function symbol. Hence
these additions correspond to the transformation described in Lemma 20.

• When the τ -th step is any other transition, we do not modify the trace.

By construction, the yielded trace is in tracenIOIO (CI ,−→i) which allows us to conclude.

A.3 (`is, tracenIOIO (CI ,−→i)) is nIO-mapped by (`nIOIO ,`i, tracenIOIO (CI ,−→i))

Lemma 24. Let CI = ρI , PI ,AI be an initial instrumented configuration. Let nIO ∈ N.
(`is, tracenIOIO (CI ,−→i)) is nIO-mapped by (`nIOIO , tracenIOIO (CI ,−→i)).

Proof. Let T ∈ tracenIOIO (CI ,−→i). Let S be a finite set such that S ⊆ {(τ, F) ∈ steps(T) ×
F | T, τ `is F}. To prove (`is, tracenIOIO (CI ,−→i)) is nIO-mapped by (`nIOIO , tracenIOIO (CI ,−→i)),
we need to find a trace T ′ and two mappings γ and θ that satisfy the properties stated in
Definition 34.

We take T ′ = T and γ the identity function. Thus we trivially deduce that items 1, 2
and 3 of Definition 34 hold. In the following, we define θ and show at the same time that it
satisfies item 4.

For all (τ, F) ∈ S,

• if F is an event fact or a table fact then we define θ(τ, F) = τ . By definition of `nIOIO ,
we have that T, τ `is F implies T, τ `nIOIO F . Thus, since (τ, F) ∈ S, we conclude that
T, τ `nIOIO F .

• if F = msgi(N
′,M ′) then T, τ `is F implies T [τ − 1]

msg(N,M)−−−−−−→i T [τ] with T [τ] =
i, ρ,P, T ,A,Λ.

If I-Out is the rule applied for this transition, i ≥ n, N ′ = N [], M ′ = Mρ with N ∈ AI
then we know by definition of tracenIOIO (CI ,−→i) that T [τ]

M
==⇒

dr
T [τ ′]

msg(N ′,M ′)−−−−−−−→i T [τ ′+1]

for some τ ′ where T [τ ′]
msg(N ′,M ′)−−−−−−−→i T [τ ′ + 1] is an application of the rule I-Msg. In

such a case, we define θ(τ, F) = τ ′+ 1. Note that since T [τ ′]
msg(N ′,M ′)−−−−−−−→i T [τ ′+ 1] is an

application of the rule I-Msg, we have that T, τ ′ + 1 `nIOIO F and so T, θ(τ, F) `nIOIO F

Otherwise, we define θ(τ, F) = τ . In such case, by definition of `nIOIO , we have that
T, τ `is F implies T, τ `nIOIO F and so the result holds.

• if F = atti(M
′) then T, τ `is F implies that M ′ = Mρ and M ∈ A with T [τ] =

i, ρ,P, T ,A,Λ. Either M ∈ data(T, τ) and in such a case, we define θ(τ, F) = τ or else
we know by definition of tracenIOIO (CI ,−→i) (specifically item 1 of Definition 12) that there
exists two steps τ ′, τ ′′ ∈ steps(T) such that T [τ ′]

M
==⇒

dr
T [τ ′′]. Moreover by construction

of T [τ ′]
M
==⇒

dr
T [τ ′′], we have that M ∈ data(T, τ ′′). Hence we define θ(τ, F) = τ ′′. Since

M ∈ data(T, τ ′′), we have by definition of `nIOIO that T, τ ′′ `nIOIO F and so the result
holds.

Finally, since for all (τ, F) ∈ S, θ(τ, F) = τ when F is an event fact then item 5 of Definition 34
directly holds.

93

We finish this section by combining all our different intermediate results to prove Lemma 8.

Lemma 8. Let CI = ρ, P,A be an initial instrumented configuration. Let κ ∈ N. Let % be an
IO-κ-compliant correspondence query and R be a set of fully IO-κ-compliant restrictions such
that names(%,R) ⊆ dom(ρ).

We have (`i, trace(CI ,−→i)|R) |= % if and only if (`κIO,`i, traceκIO(CI ,−→i)|R) |= %.

Proof. The completeness of our restriction is given by Lemma 15. For the soundness, by
Lemma 19, (`i, trace(CI ,−→i)) is mapped by (`is, trace(CI ,−→i)). Hence by Lemma 16, (`i
, trace(CI ,−→i)) is n-mapped by (`is, trace(CI ,−→i)). By Lemma 23, (`is, trace(CI ,−→i)) is n-
mapped by (`is, tracenIO(CI ,−→i)). By Lemma 24, (`is, tracenIO(CI ,−→i)) is n-mapped by (`nIOIO

,`i, tracenIO(CI ,−→i)). Using the transitivity of the mappings, i.e. Lemma 16, we obtain that
(`i, trace(CI ,−→i)) is n-mapped by (`nIOIO ,`i, tracenIO(CI ,−→i)). Finally, using Corollary 1, we
conclude that (`nIO,`i, tracenIO(CI ,−→i)) |= ψ implies (`i, trace(CI ,−→i)) |= ψ.

B Proof of Theorem 1

Before proving Theorem 1, we state an invariant on the traces in tracenIO(CI ,−→i).

Definition 35. Let Sp be a set of predicates. Let nIO ∈ N. Let CI = ρ0, P0,A0 be an
initial instrumented configuration. Let T ∈ tracenIOIO (CI ,−→i). Let τ ∈ {0, . . . ,maxstep(T)}.
Let C(τ) = CA(CI) ∪ CP(CI , nIO) ∪ C≤τe (T). We say InvSp(T, τ) holds if and only if T [τ] =
n, ρ,P, T ,A,∆ and:

1. for all M ∈ A, there exists a derivation D′ of attn(Mρ) at step τ ′ ≤ τ from C(τ ′) such
that T,Sp, nIO ` D′ and τ ′ is the smallest step such that T, τ ′ `nIOIO attn(Mρ); and

2. for all tbl(M1, . . . ,Mr) ∈ T , there exists a derivation D′ of tablen(tbl(M1, . . . ,Mr)ρ) at
step τ ′ ≤ τ from C(τ) such that T,Sp, nIO ` D′ and τ ′ is the smallest step such that
T, τ ′ `nIOIO tablen(tbl(M1, . . . ,Mr)ρ); and

for all (P,O, I) ∈ P, there exist P ′,H′, I ′, ρ′, σ′ such that:

3. [[P ′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO); and

4. Pρ = P ′ρ′σ′, I ′σ′ = I; and

5. for all F ′ ∈ H′σ′, there exist τ ′ and a derivation D′ of F ′ at step τ ′ from C(τ ′) such that
τ ′ ≤ τ and T,Sp, nIO ` D′. For all formulae φ ∈ H′, σ′ |= φ.

Items 1 and 2 indicate that any terms added to the attacker knowledge or in a table can
be derived by the set of initial clauses. Note that the trace T always satisfies these derivations
w.r.t. the set of allowed predicates Sp. Items 3 and 4 show the link between the concrete
trace and the symbolic representation of the process within the transformation [[P,O, I]]nHρ.
Similarly to the first two items, item 5 also indicates that the concretisation of facts in H can
be derived by the set of initial clauses.

In Definition 35, we define an invariant on trace that we will rely on to prove Lemma 1.
Contrary to what could be expected, given a trace T , we will not show that InvSp(T, τ) for
all steps τ ∈ {0, . . . ,maxstep(T)}. The main reason being that all derivations in Definition 35
must be satisfied by the trace w.r.t. the set of allowed predicates Sp. Such a property is in fact

94

problematic for terms that have a data constructor function symbol as root. However, since T
is data compliant, we know from Definition 12 that the trace always deconstructs/reconstructs
terms when they are first introduced. We will in fact show that our invariant always holds at
the end of such deconstruction/reconstruction phase.

B.1 Handling data constructor function symbols

Given a trace T and a step τ , if T [τ] = n, ρ,P, T ,A,∆, we denote by A(T [τ]) the set A.
Given a derivation D, a trace T and a set of allowed predicates Sp, we consider a weaker

notion of satisfiability, denoted T,Sp, nIO `w D, that follows Definition 18 except that item 4
of Definition 18 is weakened in the case where F0 = atti(f(M1, . . . ,Mn)) with f ∈ Fdata when
η is the root of the derivation. In such case, we only request that f(M1, . . . ,Mn) ∈ A(T [τ0]).

Finally, we denote by Ad(T [τ]) and Aw(T [τ]) the two disjoint sets such that Aw(T [τ]) is
the smallest set satisfying the following properties:

• A(T [τ]) = Ad(T [τ]) ∪ Aw(T [τ])

• for all M ∈ Aw(T [τ]), there exist τ ′ ≤ τ and a derivation D of attn(Mρ) at step τ ′ from
C(τ ′) such that T,Sp, nIO `w D; and

• for all M ∈ Ad(T [τ]), there exists a derivation D of attn(Mρ) at step τ ′ ≤ τ from C(τ ′)
such that T,Sp, nIO ` D and τ ′ is the smallest step such that T, τ ′ `nIOIO attn(Mρ).

• for allM ∈ A(T [τ]), M ∈ Ad(T [τ]) if and only if there exists τ ′ ≤ τ such that T, τ ′ `nIOIO

attn(Mρ).

Note that Ad(T [τ]) and Aw(T [τ]) do not necessarily exist (for instance if M ∈ A(T [τ]) and
there is no derivation of attn(Mρ)).

Lemma 25. Let T ∈ tracenIOIO (CI ,−→i). Let τ ∈ N. Assume that Ad(T [τ]) and Aw(T [τ]) exist.

For all M ∈ A(T [τ]), if T [τ]
M
==⇒

r
T [τ ′] or T [τ]

M
==⇒

dr
T [τ ′], then Ad(T [τ ′]) and Aw(T [τ ′])

exist with Aw(T [τ ′]) = Aw(T [τ]) \ {M} and M ∈ Ad(T [τ ′]).

Proof. We prove this lemma by induction on the size of M . Consider T [τ] = n, ρ,P, T ,A,∆.
Since M is a ground term, we have M = f(M1, . . . ,Mm).

If M ∈ Ad(T [τ]), then by definition, there exists τ ′′ ≤ τ such that T, τ ′′ `nIOIO attn(Mρ).
Hence M ∈ data(T, τ ′′) which implies M ∈ data(T, τ). By definition of T [τ]

M
==⇒

r
T [τ ′] and

T [τ]
M
==⇒

dr
T [τ ′], we deduce in both cases that τ ′ = τ . As such, Ad(T [τ ′]) and Aw(T [τ ′])

trivially exist. Moreover, since Ad(T [τ ′]) and Aw(T [τ ′]) are disjoint and M ∈ Ad(T [τ]), we
obtain that Aw(T [τ ′]) \ {M} = Aw(T [τ ′]) = Aw(T [τ]).

If M 6∈ Ad(T [τ]), i.e. M ∈ Aw(T [τ]), then f ∈ Fdata (otherwise T, τ `nIOIO attn(Mρ),
which would imply M ∈ Ad(T [τ])).

We focus first on T [τ]
M
==⇒

r
T [τ ′]: By definition, τ ′ = τ + 1 and T [τ]

I-App(f,M1,...,Mm)−−−−−−−−−−−−→i

T [τ + 1] and M1, . . . ,Mm ∈ data(T, τ). Thus, for all i ∈ {1, . . . ,m}, T, τ `nIOIO attn(Miρ)
and so M1, . . . ,Mm ∈ Ad(T [τ]). Hence, for all i ∈ {1, . . . ,m}, there exists a derivation Di of
attn(Miρ) at step τi ≤ τ from C(τi) and T,Sp, nIO ` Di where τi is the smallest step such that

95

T, τi `nIOIO attn(Miρ). By definition, we know that f(x1, . . . , xm) → f(x1, . . . , xm) ∈ def(f).
Hence we can thus build a derivation D of attn(Mρ) at step τ + 1 by applying the rule Rf on
D1, . . . ,Dm:

attn(x1) ∧ . . . ∧ attn(xm) −→ attn(f(x1, . . . , xm))

...D1 Dm

attn(Mρ), τ + 1

attn(M1ρ), τ1 attn(Mmρ), τm

Since T [τ]
I-App(f,M1,...,Mm)−−−−−−−−−−−−→i T [τ + 1] and f(M1, . . . ,Mm) ∈ A(T [τ + 1]), we deduce that

T, τ + 1 `nIOIO attn(Mρ) and so D satisfies item 4 of Definition 18. Moreover, since τi ≤ τ for
all i, we also deduce that item 3 of Definition 18 is satisfied. Items 1 and 2 are trivially satisfied
since T,Sp, nIO ` Di for all i. Therefore, T,Sp, nIO ` D. Note that since M 6∈ Ad(T [τ]), we
do have that τ + 1 is the smallest step such that T, τ + 1 `nIOIO attn(Mρ) meaning that
M ∈ Ad(T [τ + 1]) and so M 6∈ Aw(T [τ + 1]). Since the attacker knowledge of T [τ] and
T [τ + 1] is the same (M was already in A), we can conclude.

We now focus on T [τ]
M
==⇒

dr
T [τ ′]. By definition, there exist τ0, . . . , τm such that τ ′ = τm+

1, τ0 = τ and T [τ0]
M
==⇒

d,1
T [τ1]

M
==⇒

d,2
. . .

M
==⇒

d,m
T [τm]

M
==⇒

r
T [τm+1]. Let us show that for all

i ≤ m, {M1, . . . ,Mi} ⊆ Ad(T [τi]) and Aw(T [τi]) = Aw(T [τ]). This proof is done by induction
on i. The base case (i = 0) being trivial, we only focus on the inductive step. By our inductive
hypothesis, we know that Ad(T [τi−1]) and Aw(T [τi−1]) exist, Aw(T [τi−1]) = Aw(T [τ]) and
{M1, . . . ,Mi−1} ⊆ Ad(T [τi−1]). We do a case analysis on T [τi−1]

M
==⇒

d,i
T [τi]:

• Case τi = τi−1 and Mi ∈ data(T, τi−1): In such a case, T, τi `nIOIO attn(Miρ) and so
Mi ∈ Ad(T [τi−1]). Since our inductive hypothesis gave us Aw(T [τi−1]) = Aw(T [τ])
and {M1, . . . ,Mi−1} ⊆ Ad(T [τi−1]). We conclude that Aw(T [τi]) = Aw(T [τ]) and
{M1, . . . ,Mi} ⊆ Ad(T [τi]).

• Case T [τi−1]
I-App(πfi ,M)
−−−−−−−−→i T [τi−1 + 1]

Mi==⇒
dr
T [τi]: Since M ∈ Aw(T [τ]), we know that

there exists τ ′′ and a derivation D of attn(Mρ) at step τ ′′ from C(τ ′′) such that τ ′′ ≤ τi−1

and T,Sp, nIO `w D. Since T [τi−1]
I-App(πfi ,M)
−−−−−−−−→i T [τi−1 + 1], we can build a derivation

Di of attn(Miρ) at step τi−1 + 1 by applying the rule related the projection πfi :

attn(f(x1, . . . , xm)) −→ attn(xi)

D

attn(Miρ), τi−1 + 1

attn(Mρ), τ ′′

96

Thanks to T,Sp, nIO `w D and the root node of the derivationDi being the application of
a projection of f , we obtain T,Sp, nIO `w Di. Hence, Aw(T [τi−1+1]) and Ad(T [τi−1+1])
exist.

If the root of Mi is not a data constructor symbol, then T, τi−1 + 1 `nIOIO attn(Miρ) and
so T,Sp, nIO ` Di. Note that we know that Mi 6∈ data(T, τi−1) meaning that τi−1 + 1
is the smallest step such that T, τi−1 + 1 `nIOIO attn(Miρ). Hence, Mi ∈ Ad(T [τi−1 + 1])

and Aw(T [τi−1 + 1]) = Aw(T [τi−1]). Moreover, by definition of T [τi−1 + 1]
Mi==⇒

dr
T [τi],

τi = τi−1+1. Therefore we can conclude thatAw(T [τi]) = Aw(T [τ]) and {M1, . . . ,Mi} ⊆
Ad(T [τi]).

If the root of Mi is a data constructor symbol, then Aw(T [τi−1 + 1]) = Aw(T [τi−1]) ∪
{Mi}. Indeed, we cannot have Mi ∈ data(T, τi−1 + 1) since Mi 6∈ data(T, τi−1) and

T [τi−1]
I-App(πfi ,M)
−−−−−−−−→i T [τi−1 + 1]

Mi==⇒
dr
T [τi]. Since T [τi−1 + 1]

Mi==⇒
dr
T [τi] and |Mi| <

|M |, we can apply our main inductive hypothesis which allows us to deduce that
Aw(T [τi]) = Aw(T [τi−1+1])\{Mi} andMi ∈ Ad(T [τi]). Thus, Aw([τi]) = Aw(T [τi−1]) =
Aw(T [τ]). Moreover, since {M1, . . . ,Mi−1} ⊆ Ad(T [τi−1]), we conclude that {M1, . . . ,Mi} ⊆
Ad(T [τi]).

We have shown that {M1, . . . ,Mm} ⊆ Ad(T [τm]) and Aw(T [τm]) = Aw(T [τ]). Since
T [τm]

M
==⇒

r
T [τ ′] with M = f(M1, . . . ,Mm), we have already shown that Ad(T [τ ′]) and

Aw(T [τ ′]) exist and Aw(T [τ ′]) = Aw(T [τm])\{M}. With Aw(T [τm]) = Aw(T [τ]), we conclude
our proof.

B.2 Proving the invariant

We start by showing the soundness of D′ ⇓′ (U ′, σ′, φ) with respect to D ⇓ U . The following
lemma is the same as [BAF08, Lemma 11] but extended to may-fail terms and rewrite rules
with conditional formulae.

Lemma 26 ([CB13]). Let σ be a closed substitution.
Let D be a plain expression. If Dσ ⇓ U , then there exist U ′, σ1, φ and σ′1 such that

D ⇓′ (U ′, σ1, φ), U = U ′σ′1, σ = (σ1σ
′
1)|dom(σ) and σ′1 |= φ.

Let D1, . . . , Dn be plain expressions. If for all i ∈ {1, . . . , n}, Diσ ⇓ Ui, then there exist
U ′1, . . . , U

′
n, σ1, φ and σ′1 such that (D1, . . . , Dn) ⇓′ ((U ′1, . . . , U

′
n), σ1, φ), Ui = U ′iσ

′
1 for all

i ∈ {1, . . . , n}, σ = (σ1σ
′
1)|dom(σ) and σ′1 |= φ.

Lemma 1 considers IO-compliant traces. From Definition 12, a trace T ∈ tracenIOIO (CI ,−→i)
has a particular shape:

• The first transitions of T are the transitions
I-App(0)−−−−−→i

I-App(succ,0)−−−−−−−−→i . . .
I-App(succ,n−1)−−−−−−−−−−→i

for some integer n.

• An output transition is followed by a deconstruction/reconstruction phase when needed,

i.e. if T [τ]
msg(N,M)−−−−−−→i T [τ ′] by the rule I-Out then T [τ ′]

M
==⇒

dr
T [τ ′′] for some τ ′′.

Moreover, if n ≥ nIO and N ∈ AI then T [τ ′′]
msg(N,M)−−−−−−→i T [τ ′′ + 1] by the rule I-Msg.

97

• An function application transition is also followed by a deconstruction/reconstruction

phase when needed, i.e. if T [τ]
I-App(f,M1,...,Mn)−−−−−−−−−−−−→i T [τ ′] with f(M1, . . . ,Mn) ⇓ M then

T [τ ′]
M
==⇒

dr
T [τ ′′] for some τ ′′.

• A phase transition is followed by a reconstruction of all terms in the attacker knowledge,
i.e. if T [τ0−1] −→i T [τ0] by the rule I-Phase then T [τ0]

M1==⇒
r
T [τ1]

M2==⇒
r
. . .

Mn==⇒
r
T [τn]

for some τ1, . . . , τn and A(T [τ0]) = {M1, . . . ,Mn}.

We call these sequences of transitions complete transitions, denoted →c. We also define
C →c C′ when C −→i C′ is an application of a rule other than I-Out, I-App and I-Phase.
Therefore, a trace T can be seen as a sequence of complete transitions, i.e. T = T [0] →c

T [τ1] →c . . . →c T [τn] where τ1, . . . , τn−1 ≤ maxstep(T) and τn = maxstep(T). We say that
0, τ1, . . . , τn are the complete steps of T . In the next lemma we show that InvSp(T, τ) for any
complete steps τ of T .

Lemma 27. Let Sp be a set of predicates. Let nIO ∈ N. Let CI = ρI , PI ,AI be an initial
instrumented configuration. For all T ∈ tracenIOIO (CI ,−→i), for all complete steps τ of T ,
InvSp(T, τ).

Proof. First of all, note that for all derivations D′ and all sets of predicates Sp,S ′p, Definition 18
directly gives us that Sp ⊆ S ′p and T,S ′p, nIO ` D′ implies T,Sp, nIO ` D′. Therefore, Sp ⊆ S ′p
and InvS′p(T, τ) implies InvSp(T, τ). Thus, it is sufficient to prove the lemma when Sp contains
all predicates. The proof is done by induction on τ .

Base case τ = 0: T [0] = CI = n, ρ,P, T ,A,Λ with P = {{(PI , ∅, ∅)}}, ρ = ρI , A = AI , T = ∅,
Λ = ∅ and n = 0. By defining P ′ = PI , I ′ = ∅, H′ = >, ρ′ = ρI and σ′ = id, we directly obtain
that item 4 of Definition 35 holds. Moreover, by definition, CP(CI , nIO) = [[(PI , ∅, ∅)]]0>ρI
hence the item 3 holds. Since H′σ′ = > and T = ∅, items 2 and 5 also hold. By definition
of an initial instrumented semantics, AI only contains names that are included in dom(ρI).
Moreover, for all a ∈ AI , aρI = a[]. Hence for all a ∈ AI , we can build a derivation of
att0(a[]) that is satisfied by T at step 0 w.r.t. SF by using the clauses RInit from CA(CI , nIO).
Therefore, we conclude that InvSp(T, 0) holds.

Inductive step τ > 0: Since τ > 0 and τ is a complete step, we know that there exists a
complete step τ0 < τ such that T [τ0] →c T [τ]. By our inductive hypothesis, we deduce that
InvSp(T, τ0) holds. Note that when the transition T [τ0] →c T [τ] does not correspond to a
change of phase, it is sufficient to prove the invariant on the modified elements between T [τ0]
and T [τ] to prove InvSp(T, τ) (the invariant directly holds on unmodified elements in T [τ]
from the fact the invariant holds on T [τ0]). Let us denote T [τ0] = n0, ρ0,P0, T0,A0,Λ0 and
T [τ] = n, ρ,P, T ,A,Λ.

We do a case analysis on the complete transition T [τ0]→c T [τ]:

• Rule I-Nil: Trivial since P ⊂ P0.

• Rule I-Msg: Trivial since the derivations are unchanged.

• Rule I-Par: In such a case, P0 = P ′∪{{(P | Q,O, I)}}, P = P ′∪{{(P,O, I), (Q,O, I)}},
ρ = ρ0, n = n0. By our inductive hypothesis, we know that there exist P ′, Q′, I ′, ρ′,H′, σ′
such that (P ′ | Q′)ρ′σ′ = (P | Q)ρ, I ′σ′ = I and [[P ′ | Q′,O, I ′]]nH′ρ′ ⊆ CP(CI).

98

By definition, it implies that [[P ′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO) and [[Q′,O, I ′]]nH′ρ′ ⊆
CP(CI , nIO). Thus the result holds by associating P ′,H′, I ′, ρ′, σ′ (resp. Q′,H′, I ′, ρ′, σ′)
to (P,O, I) (resp. (Q,O, I)).

• Rule I-Repl: In such a case, P0 = P ′∪{{(!oP,O, I)}}, P = P ′∪{{(P, (O, o), (I, λ))}}, ρ =
ρ0, n = n0, Λ = Λ0∪{λ} with λ 6∈ Λ0. By our inductive hypothesis, we know that there
exist !oP ′,H′, I ′, ρ′, σ′ such that [[!oP ′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO), (!oP)ρ = (!oP ′)ρ′σ′

and I ′σ′ = I. By definition [[!oP ′,O, I ′]]nH′ρ′ = [[P ′, (O, o), (I ′, i)]]nH′ρ′. Let us define
σ′′ = σ′[i 7→ λ]. We obtain that (I ′, i)σ′′ = (I, λ). Moreover, since i is fresh, we deduce
that Pρ = P ′ρ′σ′′. Similarly, H′σ′ = H′σ′′ meaning that item 5 holds for H′σ′′. Hence
we conclude the proof by associating P ′,H′, (I ′, i), ρ′, σ′′ to (P, (O, o), (I, λ)).

• Rule I-Restr: In such a case, P0 = P ′∪{{(new a;P,O, I)}}, P = P ′∪{{(P{a′/a},O, I)}}
and ρ = ρ0[a′ 7→ a[I]] where a′ 6∈ dom(ρ0). By our inductive hypothesis, we know that
there exist P ′, I ′, ρ′,H′, σ′ such that (new a;P ′)ρ′σ′ = (new a;P)ρ0 (note that since we
consider application of mapping modulo renaming of bound name, we can have the same
a in both new a;P ′ and new a;P), I ′σ′ = I and [[new a;P ′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO).
By definition [[new a;P ′,O, I ′]]nH′ρ′ = [[P ′,O, I ′]]nH′(ρ′[a 7→ a[I ′]).
Let us define ρ′′ = ρ′[a 7→ a[I ′]]. Since I ′σ′ = I and a′ 6∈ dom(ρ0), we have P{a′/a}ρ =
P{a′/a}ρ0[a′ 7→ a[I]] = Pρ0[a 7→ a[I]] = Pρ0[a 7→ a[I ′]σ′]. With Pρ0 = P ′ρ′σ′, we ob-
tain P{a′/a}ρ = P ′ρ′′σ′. We conclude by associating P ′,H′, I ′, ρ′′, σ′ to (P{a′/a},O, I).

• Rule I-I/O: In such a case, τ = τ0 +1, ρ = ρ0, P0 = P ′∪{{(out(N,M);P,O1, I1), (ino(N,
x);Q,O2, I2)}} and P = P ′ ∪ {{(P,O1, I1), (Q{M/x}, (O2, o), (I2,Mρ))}}. Moreover,
since T ∈ tracenIOIO (CI ,−→i), we have n < nIO or N 6∈ AI . By our inductive hy-
pothesis, we know that there exist N ′,M ′, P ′, Q′, I ′1, I ′2, ρ′1, ρ′2,H′1,H′2, σ′1, σ′2 such that
(out(N,M);P)ρ = (out(N ′,M ′);P ′)ρ′1σ

′
1, (ino(N, x);Q)ρ = (ino(N ′′, x);Q′)ρ′2σ

′
2, I ′1σ′1 =

I1 and I ′2σ′2 = I2. Moreover, we have [[out(N ′,M ′);P ′,O1, I ′1]]nH′1ρ′1 ⊆ CP(CI , nIO) and
[[ino(N ′′, x);Q,O2, I ′2]]nH′2ρ′2 ⊆ CP(CI , nIO).

By definition, since n < nIO or N 6∈ AI (which implies N ′ 6∈ AI and N ′′ 6∈ AI), we have

[[out(N ′,M ′);P ′,O1, I ′1]]nH′1ρ′1 = [[P ′,O1, I ′1]]nH′1ρ′1 ∪ {H′1
O1,I′1−−−→ msgn(N ′ρ′1,M

′ρ′1)}
and [[ino(N ′′, x);Q,O2, I ′2]]nH′2ρ′2 = [[Q, (O2, o), (I ′2, x′)]]n(H′2 ∧msgn(N ′′ρ′2, x

′))(ρ′2[x 7→
x′]).

Let us define ρ′′2 = ρ′2[x 7→ x′] and σ′′2 = σ′2[x′ 7→ Mρ]. Since x′ is fresh and x is
bound, both x and x′ does not occur in ρ, ρ′2 and σ′2. Thus, Q{M/x}ρ = Qρ{Mρ/x} =
Q′ρ′2σ

′
2{Mρ/x} = Q′ρ′′2σ

′′
2 . Note that we also directly have that (I ′2, x′)σ′′2 = (I2,Mρ).

Therefore, items 4 and 3 hold by associating P ′,H′1, I ′1, ρ′1, σ′1 to (P,O1, I1) and by as-
sociating Q′, (H′2 ∧msgn(N ′′ρ′2, x

′)), (I ′2, x′), ρ′′2, σ′′2 to (Q{M/x}, (O2, o), (I2,Mρ)). We
now show the other items of Definition 35. Items 1 and 2 trivially hold since A0 =
A and T0 = T . Thus it remains to prove item 5 for msgn(N ′′ρ′2, x

′)σ′′2 , that is,
msgn(N ′′ρ′2σ

′
2, x
′σ′′2) = msgn(Nρ,Mρ).

Let us assume that H′1 = F1 ∧ . . . ∧ Fk ∧ φ. Since InvSp(T, τ0) holds, σ′1 |= φ and
there exist τ1, . . . , τk and some derivation D1, . . . ,Dk of F1σ

′
1, . . . , Fkσ

′
1 at step τ1, . . . , τk

respectively from C(τ0) such that τj ≤ τ0 and T,Sp, nIO ` Dj for all j = 1 . . . k. But

the rule H′1
O1,I′1−−−→ msgn(N ′ρ′1,M

′ρ′1) is in C(τ) and τ0 < τ . Therefore, we can build the
following derivation D of msgn(Nρ,Mρ) at step τ :

99

H′1
O1,I′1−−−→ msgn(N ′ρ′1,M

′ρ′1)(O1, I ′1σ′1)

...D1 Dm

msgn(Nρ,Mρ), τ

F1σ
′
1, τ1 Fkσ

′
1, τk

Since T, τ, nIO `is msgn(Nρ,Mρ), τ1 < τ , . . . , τk < τ and (P,O1, I ′1σ′1) ∈ P, we deduce
that T,Sp, nIO ` D which allows us to conclude.

• Rule I-Let1: In such a case, ρ = ρ0, P0 = P ′ ∪ {{(let x = D in P else Q,O, I)}} and
P = P ′ ∪ {{(P{M/x},O, I)}} with D ⇓ M . By our inductive hypothesis, we know that
there exist D′, P ′, Q′, I ′, ρ′,H′, σ′ such that (let x = D′ in P ′ else Q′)ρ′σ′ = (let x =
D in P else Q)ρ, I ′σ′ = I and [[let x = D′ in P ′ else Q′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO).
Since ρ is a mapping from names to name patterns such that for all a, b ∈ dom(ρ), a = b
iff aρ = bρ (thanks to Lemma 2), D ⇓M implies Dρ ⇓Mρ. Since Dρ = (D′ρ′)σ′, we can
apply Lemma 26 to obtain that there existM ′, σ1, σ

′
1, and φ such thatD′ρ′ ⇓′ (M ′, σ1, φ),

Mρ = M ′σ′1, σ′ = (σ1σ
′
1)|dom(σ′) and σ′1 |= φ.

By definition of [[let x = D′ in P ′ else Q′,O, I ′]]nH′ρ′, we have [[P ′,O, I ′σ1]]n(H′σ1 ∧
φ)(ρ′σ1[x 7→ M ′]) ⊆ CP(CI , nIO). Let us define P ′′ = P ′, I ′′ = I ′σ1, H′′ = H′σ1 ∧ φ,
ρ′′ = ρ′σ1[x 7→ M ′] and σ′′ = σ′1. We show that the invariant holds by associat-
ing P ′′,H′′, I ′′, ρ′′ and σ′′ to (P{M/x},O, I). We already proved that item 3 holds.
Moreover, P{M/x}ρ = (Pρ){Mρ/x} = P ′ρ′σ′{M ′σ′

1/x}. But σ′ = (σ1σ
′
1)|dom(σ′) hence

P{M/x}ρ = (P ′ρ′σ1{M
′
/x})σ′1 (note that x 6∈ dom(σ′1)) which implies P{M/x}ρ =

P ′′ρ′′σ′′. Furthermore, I = I ′σ′ = I ′σ1σ
′
1 = I ′′σ′1. Hence item 4 holds. Finally, the

facts in H′σ′ are the same as in H′σ1σ
′
1 and so in H′′σ′′. Since σ′1 |= φ, we conclude that

item 5 holds.

• Rule I-Let2: Similar to the previous case.

• Output transition: Since T [τ0] →c T [τ] is a complete transition, one of the following
two cases hold:

1. T [τ0]
msg(N,M)−−−−−−→i T [τ0 + 1]

M
==⇒

dr
T [τ ′], τ = τ ′ and either N 6∈ AI or n < nIO.

2. T [τ0]
msg(N,M)−−−−−−→i T [τ0 + 1]

M
==⇒

dr
T [τ ′]

msg(N,M)−−−−−−→i T [τ] with τ = τ ′ + 1, N ∈ AI ,

n ≥ nIO and T [τ − 1]
msg(N,M)−−−−−−→i T [τ] is an application of I-Msg.

Note that T [τ0 +1]
M
==⇒

dr
T [τ ′] only modifies the attacker knowledge and the rule I-Msg

leaves the configuration unchanged. Let us denoteA1 the attacker knowledge of T [τ0+1].
We have P0 = P ′∪{{(out(N,M);P,O, I)}}, N ∈ A0, A1 = A0∪{M} and P∪{{(P,O, I)}}.
By our inductive hypothesis, we know that there exists N ′,M ′, P ′, I ′, ρ′,H′, σ′ such that
(out(N ′,M ′);P ′)ρ′σ′ = (out(N,M);P)ρ, I ′σ′ = I and [[out(N ′,M ′);P ′,O, I ′]]nH′ρ′ ⊆
CP(CI , nIO).

We do a case analysis on the two previous cases:

100

– Case 1: by definition [[out(N ′,M ′);P ′,O, I ′]]nH′ρ′ = [[P ′,O, I ′]]nH′ρ′ ∪ {H′ O,I
′

−−−→
msgn(N ′ρ′,M ′ρ′)}. But we know that N ∈ A0. Thus InvSp(T, τ ′) ensures that
there exists a derivation DN of Nρ at some step τN ≤ τ0 from C(τN) such that
T,Sp, nIO ` Dn. Moreover, item 5 also ensures that if we denote H′ = F1 ∧ . . . ∧
Fk ∧ φ then σ′ |= φ and there exist τ1, . . . , τk and some derivations D1, . . . ,Dk
of F1σ

′, . . . , Fkσ
′ at step τ1, . . . , τk respectively from C(τ0) such that τj ≤ τ0 and

T,Sp, nIO ` Dj for all j = 1 . . . k. Thus we can build a derivation D of attn(Mρ)
at step τ0 + 1 from C(τ0 + 1) as follows:

msgn(x, y) ∧ attn(x) −→ attn(y)

H′ O,I
′

−−−→ msgn(N ′ρ′,M ′ρ′)(O, I ′σ′) DN

...D1 Dk

attn(Mρ), τ0 + 1

msgn(Nρ,Mρ), τ0 + 1 attn(Nρ), τN

F1σ
′, τ1 Fkσ

′, τk

Note that we do not necessarily have that T,Sp, nIO ` D when Mρ has a data
constructor function symbol at the root. However, we do have that T,Sp, nIO `w D.
Furthermore, since InvSp(T, τ0) holds and in particular item 1, we deduce that
Ad(T [τ0 + 1]) and Aw(T [τ0 + 1]) exist with Aw(T [τ0 + 1]) ⊆ {M}. Thus we can
apply Lemma 25 which allows us to deduce that M ∈ Ad(T [τ]) and in particular
Aw(T [τ]) = ∅. Therefore item 1 of Definition 35 holds which allows us to conclude.

– Case 2: by definition [[out(N ′,M ′);P ′,O, I ′]]nH′ρ′ = [[P ′,O, I ′]]nH′ρ′ ∪ {H′ O,I
′

−−−→
attn(M ′ρ′)}. Once again, item 5 also ensures that if we denote H′ = F1 ∧ . . . ∧
Fk ∧ φ then σ′ |= φ and there exist τ1, . . . , τk and some derivations D1, . . . ,Dk of
F1σ

′, . . . , Fkσ
′ at steps τ1, . . . , τk respectively from C(τ0) such that τj ≤ τ0 and

T,Sp ` Dj for all j = 1 . . . k. Thus we can build a derivation D of attn(Mρ) at
step τ0 + 1 from C(τ0 + 1) as follows:

H′ O,I
′

−−−→ attn(M ′ρ′)(O, I ′σ′)

...D1 Dk

attn(Mρ), τ0 + 1

F1σ
′, τ1 Fkσ

′, τk

As in the previous case, T,Sp, nIO `w D meaning that Ad(T [τ0 +1]) and Aw(T [τ0 +
1]) exist with Aw(T [τ0 + 1]) ⊆ {M}. We conclude by applying Lemma 25.

101

• Rule I-In: In such a case, ρ = ρ0, P0 = P ′ ∪ {{(ino(N, x);Q,O, I)}} and P = P ′ ∪
{{(Q{M/x}, (O, o), (I,Mρ)}} with N,M ∈ A0. By our inductive hypothesis, we know
that there existN ′, Q′, I ′, ρ′,H′, σ′ such that (ino(N ′, x);Q′)ρ′σ′ = (ino(N, x);Q)ρ, I ′σ′ =
I and [[ino(N ′, x);Q′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO). We do a case analysis on whether
N ∈ AI and n ≥ nIO.

– Case N 6∈ AI or n < nIO: by definition [[ino(N ′, x);Q′,O, I ′]]nH′ρ′ = [[Q′, (O, o),
(I ′, x′)]]n(H′ ∧ msgn(N ′ρ′, x′))ρ′[x 7→ x′] with x′ a fresh variable. Let us define
ρ′′ = ρ′[x 7→ x′] and σ′′ = σ′[x′ 7→ Mρ]. Since x′ is fresh and x was bound (i.e.
does not appear in ρ, ρ′, σ′), we deduce that Q′ρ′′σ′′ = Q′ρ′[x 7→ x′]σ′[x′ 7→Mρ] =
Q′ρ′σ′[x 7→ Mρ] = Qρ[x 7→ Mρ] = Q{M/x}ρ. Moreover, by defining I ′′ = (I ′, x′),
we deduce that I ′′σ′′ = (I ′σ′,Mρ) = (I,Mρ). We show that the result holds by
assigning Q′, I ′′, (H′ ∧msgn(N ′ρ′, x′)), ρ′′ and σ′′ to (Q{M/x}, (O, o), (I,Mρ)). To
do so, it remains to define a derivation for msgn(Nρ,Mρ).
We know that InvSp(T, τ0) holds and in particular item 1. Thus, M,N ∈ A0

implies that there exist τM , τN and some derivation DM ,DN of attn(Mρ), attn(Nρ)
at step τM , τN respectively from C(τ0) such that τM ≤ τ0, τN ≤ τ0, T,Sp ` DN
and T,Sp ` DM . Thus we can build a derivation D of msgn(Mρ) at step τ0 + 1
from C(τ0 + 1) as follows:

attn(x) ∧ attn(y) −→ msgn(x, y)

DN DM

msgn(Nρ,Mρ), τ0 + 1

attn(Nρ), τN attn(Mρ), τM

Since T, τ0 + 1 `nIOIO msgn(Nρ,Mρ), τN < τ0 + 1 and τM < τ0 + 1, we deduce that
T,Sp, nIO ` D which allows us to conclude.

– Case N ∈ AI and n ≥ nIO: by definition [[ino(N ′, x);Q′,O, I ′]]nH′ρ′ = [[Q′, (O, o),
(I ′, x′)]]n(H′ ∧ attn(x′))ρ′[x 7→ x′] with x′ a fresh variable. As in the previous case,
we can define ρ′′ = ρ′[x 7→ x′], σ′′ = σ′[x′ 7→ Mρ] and I ′′ = (I ′, x′). Moreover,
the invariant can be shown by assigning Q′, I ′′, (H′ ∧ attn(x′)), ρ′′, σ′′ to (Q{M/x},
(O, o), (I,Mρ)) and defining a suitable derivation for attn(Mρ). Such a derivation
can be derived from the fact that M ∈ A0 and InvSp(T, τ0) holds (in particular
item 1).

• Application of function symbol: Since T [τ0] →c T [τ] is a complete transition, we have

T [τ0]
I-App(f,M1,...,Mm)−−−−−−−−−−−−→i T [τ0 + 1]

M
==⇒

dr
T [τ] where f(M1, . . . ,Mm) ⇓ M . In particular,

A(T [τ0 + 1]) = A0 ∪ {M} and M1, . . . ,Mm ∈ A0. Note that M1, . . . ,Mm are terms.
Thus by definition of ⇓, f(M1, . . . ,Mm) ⇓ M implies that there exist f(U1, . . . , Um)→
U || φ ∈ def(f) and a substitution σ such that Uiσ = Mi for all i ∈ {1, . . . ,m}, M = Uσ
and σ |= φ. Moreover, since InvSp(T, τ0) holds and M1, . . . ,Mm ∈ A0, we know that
there exist τ1, . . . , τm and some derivation D1, . . . ,Dm of attn(M1ρ), . . . , attn(Mmρ) at
step τ1, . . . , τm respectively from C(τ0) such that τj ≤ τ0 and T,Sp, nIO ` Dj for all

102

j = 1 . . . k. Therefore, we can build a derivation D of attn(Mρ) at step τ0 + 1 from
C(τ0 + 1) as follows:

attn(U1) ∧ . . . ∧ attn(Um) ∧ φ −→ attn(U)

...D1 Dm

attn(Mρ), τ0 + 1

attn(M1ρ), τ1 attn(Mmρ), τm

Once again, T,Sp, nIO `w D meaning that Ad(T [τ0 + 1]) and Aw(T [τ0 + 1]) exist with
Aw(T [τ0 + 1]) ⊆ {M}. We conclude by applying Lemma 25.

• Rule I-New: Direct by application of the clause RGen.

• Rule I-Event: In such a case, τ = τ0 + 1, P0 = P ′ ∪ {{(evento(ev);P,O, I)}} and P =
P ′ ∪ {{(P,O, I)}}. By our inductive hypothesis, there exist ev′, P ′, I ′, ρ′,H′, σ′ such that
(evento(ev′);P ′)ρ′σ′ = (evento(ev);P)ρ, I ′σ′ = I and [[evento(ev′);P ′,O, I ′]]nH′ρ′ ⊆
CP(CI , nIO). By definition, [[evento(ev′);P ′,O, I ′]]nH′ρ′ = [[P ′,O, I ′]]n(H′∧s-event(o[I ′],
ev′ρ′))ρ′ ∪ {H′ O,I

′
−−−→ m-event(o[I ′], ev′ρ′)}. Note that T, τ `nIOIO s-event(o[I], ev) mean-

ing that the clause −→ s-event(o[I], evρ) ∈ C(τ). Since I = I ′σ′ and evρ = ev′ρ′σ′,
we deduce that s-event(o[I], evρ) is trivially derivable from C(τ) which allows us to
conclude.

• Phase transition: Since T [τ0] →c T [τ] is a complete transition, T [τ0]
I-Phase−−−−−→i T [τ0 +

1]
M1==⇒

r
. . .

Mm===⇒
r
T [τ] where A0 = {M1, . . . ,Mm}. Moreover n = n0 + 1 and P is

typically P0 where we only remove elements. Hence, items 3, 4 and 5 of Definition 35
are trivially proved. It remains to prove items 1 and 2. By our inductive hypothesis,
we know that InvSp(T, τ0) holds meaning that for all i ∈ {1, . . . ,m}, there exists τi and
a derivation Di of attn0(Miρ) at step τi ≤ τ0 such that T,Sp, nIO ` Di. Thus, for all
i ∈ {1, . . . ,m}, we can build the derivation D′i of attn0+1(Miρ) as follows:

attn0(x) −→ attn0+1(x)

Di

attn(Miρ), τ0 + 1

attn0(Miρ), τi

Since T,Sp, nIO ` Di and τi < τ0 + 1, we deduce that T,Sp, nIO `w D′i. Note that
when Miρ does not have a data constructor function symbol as root symbol, we have
in fact T,Sp, nIO ` D′i. Therefore, we deduce that Aw(T [τ0 + 1]) and Ad(T [τ0 + 1])

exist with Aw(T [τ0 + 1]) ⊆ {M1, . . . ,Mm}. Since T [τ0 + 1]
M1==⇒

r
. . .

Mm===⇒
r
T [τ], we

103

can apply successively Lemma 25 onM1, . . . ,Mm to obtain that Aw(T [τ]) and Ad(T [τ])
exist and Aw(T [τ]) = Aw(T [τ0 + 1]) \ {M1, . . . ,Mm} meaning that Aw(T [τ]) = ∅ and
so Ad(T [τ]) = A. This allows us to conclude that item 1 holds.

The proof of item 2 this quite similar. Indeed, by InvSp(T, τ0), we know that for all
tbl(M1, . . . ,Mm) ∈ T , there exists a derivation D′ of tablen0(tbl(M1, . . . ,Mm)ρ) at step
τ ′ ≤ τ0. Thus, we can build a derivation D of tablen(tbl(M1, . . . ,Mm)ρ) with n = n0 +1
as follows:

tablen0(x) −→ tablen0+1(x)

D′

tablen(tbl(M1, . . . ,Mm)ρ), τ0 + 1

tablen(tbl(M1, . . . ,Mm)ρ), τ ′

Since T,Sp, nIO ` D′ and τ ′ < τ0 + 1, we directly have that T,Sp, nIO ` D which allows
us to conclude.

• Rule I-Insert: In such a case, we have P0 = P ′ ∪ {{(insert tbl(M1, . . . ,Mm);P,O, I)}},
P∪{{(P,O, I)}} and T = T0∪{tbl(M1, . . . ,Mm)}. By our inductive hypothesis, we know
that there existsM ′1, . . . ,M ′m, P ′, I ′, ρ′,H′, σ′ such that (insert tbl(M ′1, . . . ,M

′
m);P ′)ρ′σ′ =

(insert tbl(M1, . . . ,Mm);P)ρ, I ′σ′ = I and [[insert tbl(M ′1, . . . ,M
′
m);P ′,O, I ′]]nH′ρ′ ⊆

CP(CI , nIO). By definition, [[insert tbl(M ′1, . . . ,M
′
m);P ′,O, I ′]]nH′ρ′ = [[P ′,O, I ′]]nH′ρ′∪

{H′ O,I
′

−−−→ tablen(tbl(M1, . . . ,Mm)ρ′). By associating P ′, I ′, ρ′,H′ and σ′ to (P,O, I),
we directly have that items 3, 4 and 5 hold. Moreover, with A0 = A, item 1 also di-
rectly holds. Therefore, it remains to prove item 2 and in particular, we need to define
a derivation for tablen(tbl(M1, . . . ,Mm)ρ).

Since InvSp(T, τ0) holds, if we denote H′ = F1∧ . . .∧Fk ∧φ then σ′ |= φ and there exist
τ1, . . . , τk and some derivations D1, . . . ,Dk of F1, . . . , Fk at steps τ1, . . . , τk respectively
from C(τ0) such that τj ≤ τ0 and T,Sp, nIO ` Dj for all j = 1 . . . k. Therefore, we can
build a derivation D of tablen(tbl(M1, . . . ,Mm)) at step τ0 + 1 = τ as follows:

H′ O,I
′

−−−→ tablen(M ′1ρ, . . . ,M
′
mρ
′)(O, I ′σ′)

...D1 Dk

tablen(tbl(M1, . . . ,Mm)ρ), τ0 + 1

F1, τ1 Fk, τk

Since T,Sp, nIO ` Di for all i ∈ {1, . . . ,m} and T, τ0 +1 `nIOIO tablen(tbl(M1, . . . ,Mm)ρ),
we deduce that T,Sp, nIO ` D which allows us to conclude.

104

• Rule I-Get1: In such a case, we have T = T0, P0 = P ′∪{{(geto tbl(x1, . . . , xm) suchthat
D in P else Q,O, I)}} and P = P ′ ∪ {{(Pσ, (O, o), (I, tbl(x1, . . . , xm)σρ))}} where tbl(x1,
. . . , xm)σ ∈ T and Dσ ⇓ true. By our inductive hypothesis, we know there exist
D′, P ′, Q′, I ′,H′, ρ′ and σ′ such that Dρ = D′ρ′σ′, Pρ = P ′ρ′σ′, Qρ = Q′ρ′σ′, I = I ′σ′
and [[geto tbl(x1, . . . , xm) suchthat D′ in P ′ else Q′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO).

By definition of the destructor equals, we know that Dσ ⇓ true iff equals(Dσ, true) ⇓
true iff equals((Dρ)(σρ), true) ⇓ true. Let us consider fresh variables x′1, . . . , x′m and the
substitution ρx = [xi 7→ x′i]

m
i=1. Hence, Dρ(σρ) = D′ρ′σ′ρx(ρ−1

x σρ). Since x1, . . . , xm
were bound, we deduce that Dρ(σρ) = D′ρ′ρx(σ′ρ−1

x σρ). Let us denote α = σ′ρ−1
x σρ.

By Lemma 26, equals(D′ρ′ρx, true)α ⇓ true implies that there exist U ′, σ1, σ
′
1 and φ

such that equals(D′ρ′ρx, true) ⇓′ (U ′, σ1, φ), U = U ′σ′1, α = (σ1σ
′
1)|dom(α) and σ′1 |= φ.

Note that by definition of equals, we have either U ′ = fail or U ′ = true. Since U = U ′σ′1,
we deduce that U ′ = true.

Let us denote ρ′′ = ρ′ρxσ1, σ′′ = σ′1 and I ′′ = (I ′σ1, tbl(x1, . . . , xm)ρxσ1). We show that
I ′′σ′′ = (I, tbl(x1, . . . , xm)σρ) and Pσρ = P ′ρ′′σ′′: We know that α = (σ1σ

′
1)|dom(α)

hence I ′σ1σ
′
1 = I ′α = I ′σ′ρ−1

x σρ = Iρ−1
x σρ. Note that I is closed and does not con-

tain any name (contains only patterns). Moreover, dom(ρ−1
x σ) = {x1, x

′
1, . . . , xm, x

′
m}.

Thus, Iρ−1
x σρ = I. Similarly, we have tbl(x1, . . . , xm)ρxσ1σ

′′ = tbl(x1, . . . , xm)ρxα =
tbl(x1, . . . , xm)ρxσ

′ρ−1
x σρ. Note that dom(σ′)∩{x1, x

′
1, . . . , xm, x

′
m} = ∅ since x1, . . . , xm

were bound and x′1, . . . , x′m are fresh. Thus, tbl(x1, . . . , xm)ρxσ1σ
′′ = tbl(x1, . . . , xm)σ′σρ

and so tbl(x1, . . . , xm)ρxσ1σ
′′ = tbl(x1, . . . , xm)σρ. This allows us to conclude that

I ′′σ′′ = (I, tbl(x1, . . . , xm)σρ).

Let us now prove Pσρ = P ′ρ′′σ′′: P ′ρ′′σ′′ = P ′ρ′ρxσ1σ
′
1. Since (σ1σ

′
1)|dom(α) = α, we

deduce that P ′ρ′′σ′′ = P ′ρ′ρxσ
′ρ−1
x σρ. Once again, we can swap the substitution to

obtain P ′ρ′′σ′′ = P ′ρ′σ′σρ = Pρσρ = Pσρ.

By definition of [[geto tbl(x1, . . . , xm) suchthatD′ in P ′ elseQ′,O, I ′]]nH′ρ′, since equals(D′ρ′ρx, true) ⇓′
(U ′, σ1, φ), we have [[P, (O, o), (I ′σ1, tbl(x1, . . . , xm)ρxσ1)]]n(H′σ1∧tablen(tbl(x1, . . . , xm)ρxσ1))∧
φ)(ρ′ρxσ1) ⊆ CP(CI , nIO). Therefore, by associating P ′, I ′′, ρ′′, (H′σ1∧tablen(tbl(x1, . . . , xm)ρxσ1))∧
φ) and σ′′ to (Pσ, (O, o), (I, tbl(x1, . . . , xm)σρ)), we already prove items 3 and 4 of Def-
inition 35 for InvSp(T, τ). Since A = A0 and T = T0, it only remains to prove item 5.

First, we know that σ′1 |= φ and so σ′′ |= φ. Second, notice that H′σ1σ
′
1 = H′α =

Hσ′ρ−1
x σρ. Considering that dom(ρ−1

x) and dom(σ) are respectively variables x′1, . . . , x′m
and x1, . . . , xm, we deduce that H′σ1σ

′
1 = H′σ′ρ. Since H′ and σ′ do not contain names

(only patterns), we conclude that H′σ1σ
′
1 = H′σ′. Thus, to prove item 5, we only need

to define a derivation for tablen(tbl(x1, . . . , xm)ρxσ1σ
′′). However, we already proved

that tbl(x1, . . . , xm)ρxσ1σ
′′ = tbl(x1, . . . , xm)σρ and we know by hypothesis that tbl(x1,

. . . , xm)σ ∈ T . Thus, since InvSp(T, τ0) and in particular item 2, we can conclude.

• Rule I-Get2: In such a case, P0 = P ′∪{{(geto tbl(x1, . . . , xm) suchthatD in P elseQ,O, I)}}
and P = P ′ ∪ {{(Q,O, I)}}. By our inductive hypothesis, we know that there exist
D′, P ′, Q′, I ′,H′, ρ′ and σ′ such that Dρ = D′ρ′σ′, Pρ = P ′ρ′σ′, Qρ = Q′ρ′σ′, I = I ′σ′
and [[geto tbl(x1, . . . , xm) suchthat D′ in P ′ else Q′,O, I ′]]nH′ρ′ ⊆ CP(CI , nIO). But by
definition [[Q′,O, I ′]]nH′ρ′ ⊆ [[geto tbl(x1, . . . , xm) suchthat D′ in P ′ else Q′,O, I ′]]nH′ρ′.
Hence we can directly conclude by associating Q′,H′, ρ′ and σ′ to (Q,O, I).

• Initial transition: The first complete transition build the natural numbers in the attacker

105

knowledge, i.e. T [0]
I-App(0)−−−−−→i

I-App(succ,0)−−−−−−−−→i . . .
I-App(succ,n−1)−−−−−−−−−−→i T [τ] with τ = n + 1.

Thus, A = {0, 1, . . . , n}. We can build the derivations D0, . . . , Dn of att0(0), . . . , att0(n)
at step 1, . . . , n+ 1 respectively as follows:

−→ att0(0)

att0(0), 1

att0(x) −→ att0(succ(x))

Di

att0(succ(i)), i+ 2

att0(i), i+ 1

On the left is the derivation D0 and on the right is the derivation Di+1 for all i ∈
{0, . . . , n− 1}. Notice for all i ∈ {0, . . . , n}, T, i+ 1 `nIOIO att0(i) and so we obtain that
for all i ∈ {0, . . . , n− 1}, T,Sp, nIO ` Di which allows us to conclude.

B.3 Main proof

Theorem 1. Let CI = ρ0, P0,A0 be an initial instrumented configuration. Let Sp be a set of
predicates. Let κio ∈ N.

For all T ∈ traceκioIO (CI ,−→i), for all ground facts F different from a sure-event, for all steps
τ , if T, τ `κioIO F then there exists a derivation D of F at step τ from CA(CI) ∪ CP(CI , κio) ∪
Ce(T) such that T,Sp, κio ` D.

Proof. Consider a trace T ∈ tracenIOIO (CI ,−→i). Let F be a ground fact different from a sure-
event and a step τ such that T, τ `nIOIO F . For all τ , let us denote C(τ) = CA(CI)∪CP(CI , nIO)∪
C<τe (T). Let us denote T [τ] = n, ρ,P, T ,A,Λ.

We do a case analysis on the fact F :

• Case F = attn(M ′): By definition of T, τ `nIOIO F , we deduce that M ′ = Mρ for
some M ∈ A. We first need to consider whether τ is a complete step or not. If τ
is a complete step then by Lemma 27, we know that InvSp(T, τ). Thus by item 1 of
Definition 35, we know that there exists τ ′ ≤ τ and a derivation D of F at step τ ′ from
CA(CI)∪CP(CI , nIO)∪C≤τ ′e (T) such that T,Sp, nIO ` D. Since F is not being an event
fact and T,Sp, nIO ` D, then for all edges labeled with an event fact and a step τ ′′, we
have τ ′′ < τ ′ (otherwise item 3 of Definition 18 would not satisfied). Thus, we conclude
that D is also a derivation from C(τ ′) ⊆ C(τ). Finally, by replacing the label of the
incoming edge of the root F, τ ′ by F, τ , we obtain a new derivation D′ of F at step τ
such that T,Sp, nIO ` D′.
If τ is not a complete step then there exist τ1, τ2 such that T [τ1]→c T [τ2], τ1, τ2 are both
complete steps and τ1 < τ < τ2. But by Lemma 27, we know that InvSp(T, τ2) holds.
Hence there exist τ ′ ≤ τ2 and a derivation D of F at step τ ′ from CA(CI)∪CP(CI , nIO)∪
C≤τ ′e (T) such that T,Sp, nIO ` D. Moreover, we also know that τ ′ is the smallest step
such that T, τ ′ `nIOIO F . Hence τ ′ ≤ τ . Once again, we conclude by replacing the label
of the incoming edge of the root F, τ ′ by F, τ .

106

• Case F = tablen(tbl(M ′1, . . . ,M
′
m)): By definition of T, τ `nIOIO F , we deduce that there

exist M1, . . . ,Mm such that tbl(M1, . . . ,Mm) ∈ T and tbl(M1, . . . ,Mm)ρ = tbl(M ′1, . . . ,
M ′m). As for the previous case, either τ is a complete step or is between two complete
steps. Since τ 6= 0 (the initial set of inserted elements in CI is empty), we deduce that
there exist two complete steps τ1, τ2 such that T [τ1] →c T [τ2] and τ1 < τ ≤ τ2. By
Lemma 27, we know that InvSp(T, τ2) holds. Hence there exist τ ′ ≤ τ2 and a derivation
D of F at step τ ′ from CA(CI) ∪ CP(CI , nIO) ∪ C≤τ ′e (T) such that T,Sp, nIO ` D.
Moreover, we also know that τ ′ is the smallest step such that T, τ ′ `nIOIO F . Hence
τ ′ ≤ τ . Since F is not an event fact, we can conclude by replacing the label of the
incoming edge of the root F, τ ′ by F, τ .

• Case F = msgn(N ′,M ′): By definition of T, τ `nIOIO F , we deduce that there exist N,M

such that N ′ = Nρ, M ′ = Mρ, T [τ − 1]
msg(Nρ,Mρ)−−−−−−−−→i T [τ] and if the rule applied is

I-Out then n < nIO or N 6∈ AI . Let us do a case analysis on the rule applied:

– Case I-Msg: In such a case, M,N ∈ A(T [τ − 1]) ⊆ A(T [τ]). Moreover, τ is
a complete step (note that τ − 1 is not necessarily a complete step). Thus by
Lemma 27, we know that InvSp(T, τ) and so there exist two derivations DM ,DN
of attn(Mρ), attn(Nρ) at steps τM , τN ≤ τ from C(τ) respectively such that
T,Sp, nIO ` DM , T,Sp, nIO ` DN and τM (resp. τN) is the smallest step such
that T, τM , nIO ` attn(Mρ) (resp. T, τN , nIO ` attn(Nρ)). Since the τ -th rule is
not I-App, we deduce that τN < τ and τM < τ . Therefore, we conclude by building
the following derivation D of F at step τ :

attn(x) ∧ attn(y) −→ msgn(x, y)

DN DM

msgn(Nρ,Mρ), τ

attn(Nρ), τN attn(Mρ), τM

– Case I-I/O: In such a case, τ − 1 and τ are complete steps and so InvSp(T, τ) and
InvSp(T, τ−1) hold. Moreover, since T ∈ tracenIOIO (CI ,−→i), we deduce that n < nIO
or N 6∈ AI . Finally, by definition of the rule I-I/O, T [τ − 1] = n, ρ,P ′, T ,A,Λ
where P ′ = P ′′ ∪ {{(out(N,M);P,O1, I1), (ino(N, x);Q,O2, I2)}} and P = P ′′ ∪
{{(P,O1, I1), (Q{M/x}, (O2, o), (I2,Mρ))}}. By InvSp(T, τ − 1) and InvSp(T, τ)
(specifically items 3 and 4), we know there exists Q′, I ′2, σ′, ρ′, N ′′ and H′ such that
N ′′ρ′σ′ = Nρ, [[Q′,O, (I ′2, x′)]]n(H′ ∧ msgn(N ′′ρ′, x′))ρ′ ⊆ C(τ) and (I2,Mρ) =
(I ′2σ′, x′σ′). Furthermore by item 5, we know that there exists τ ′ ≤ τ and a
derivation D of msgn(N ′′ρ′σ′, x′σ′) at step τ ′ from C(τ) such that T,Sp, nIO ` D.
Since msgn(N ′′ρ′σ′, x′σ′) = msgn(Nρ,Mρ), we can conclude by replacing the label
of the incoming edge of the root F, τ ′ by F, τ .

– Case I-In: Same proof as for the rule I-Msg since M,N ∈ A(T [τ − 1]).

– Case I-Out: In such a case, n < nIO or N 6∈ AI . Moreover, τ − 1 is a complete
step and T [τ − 1] = n, ρ,P ′, T ,A′,Λ where P ′ = P ′′ ∪ {{(out(N,M);P,O, I)}} and

107

P = P ′′∪{{(P,O, I)}}. τ−1 being a complete step implies that InvSp(T, τ−1) holds.
Thus by items 3 and 4, we deduce that there exist N ′′,M ′′,H′σ′, ρ′ and I ′ such that
H′ O,I

′
−−−→ msgn(M ′′ρ′, N ′′ρ′) ∈ C(τ − 1) and M ′′ρ′σ′ = Mρ and N ′′ρ′σ′ = Nρ. By

item 5, we also know that if we denote H′ = F1∧ . . .∧Fm∧φ then σ′ |= φ and there
existsD1, . . . ,Dm derivations of F1σ

′, . . . , Fmσ
′ at steps τ1, . . . , τm respectively from

C(τ) such τi ≤ τ − 1 and T,Sp, nIO ` Di for all i ∈ {1, . . . ,m}. Therefore, we can
build the following derivation of msgn(Nρ,Mρ) at step τ to conclude.

H′ O,I
′

−−−→ msgn(N ′ρ′,M ′ρ′)(O, I ′σ′)

...D1 Dm

msgn(Nρ,Mρ), τ

F1σ
′, τ1 Fmσ

′, τm

• Case F = m-event(o′, ev′): By definition of T, τ `nIOIO F , we deduce T [τ −1]
event(o′,ev′)−−−−−−−→i

T [τ] where T [τ − 1] = n, ρ,P ′, T ,A,Λ, P ′ = P ′′ ∪ {{(evento(ev);P,O, I)}}, P = P ′′ ∪
{{(P,O, I)}}, o′ = o[I] and ev′ = evρ. Moreover, we know that τ − 1 is a complete
step and so InvSp(T, τ − 1) holds. By items 3 and 4 of Definition 35, we deduce that

there exists ev′′,H′, σ′, ρ′ and I ′ such that H′ O,I
′

−−−→ m-event(o[I ′], ev′′ρ′) ∈ C(τ − 1)
and I ′σ′ = I and ev′′ρ′σ′ = evρ. By item 5, we also know that if we denote H′ =
F1 ∧ . . .∧Fm ∧φ then σ′ |= φ and there exists D1, . . . ,Dm derivations of F1σ

′, . . . , Fmσ
′

at steps τ1, . . . , τm respectively from C(τ) such τi ≤ τ − 1 and T,Sp, nIO ` Di for all
i ∈ {1, . . . ,m}. Therefore, we can build the following derivation of m-event(o[I], evρ) at
step τ to conclude.

H′ O,I
′

−−−→ m-event(o[I ′], ev′′ρ′)(O, I ′σ′)

...D1 Dm

m-event(o[I], evρ), τ

F1σ
′, τ1 Fmσ

′, τm

C Proof of Theorem 2

In this section, we show the soundness of all the transformations applied on the set of clauses
during the saturation procedure. To simplify the reading of the proof, we introduce the notion
of derivation context which is typically a derivation where leaves can be holes. Similarly to a
term context, we will use the notation D[_1, . . . ,_n] to denote a derivation context D with

108

n holes. For some derivations D1, . . . ,Dn, we denote D[D1, . . . ,Dn] the derivation obtained
by replacing each hole _i in D by Di. Note that for D[D1, . . . ,Dn] to be a derivation, it is
required that for all i ∈ {1, . . . , n}, the incoming edge of the root of Di has the same label as
the incoming edge of the hole _i in D.

Example 28. In Example 18, we provided the following small derivation, denoted D, describ-
ing the effects of precise events:

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[])) −→ att0(x)

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[])) −→ att0(x) s-event(o[], precise(M1))

−→ att0(M2) s-event(o, precise(M2))

att0(s[])

att0(M1)

att0(M2)
s-event(o[], precise(M2))

s-event(o[], precise(M1))

Below we show the derivation context D′[_1] obtained by replacing the subtree rooted by
att0(senc(x, k[]) −→ att0(x) with a hole. Graphically, the hole is represented by a numbered
square.

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[])) −→ att0(x)

s-event(o[], precise(M1))1

att0(s[])

att0(M1) s-event(o[], precise(M1))

When the context contains only one hole, we may remove the number 1 from the square and
directly denote the context D′[_]. If we now consider the following derivation D1, we obtain
D = D′[D1]:

att0(senc(x, k[]) ∧ s-event(o[], precise(senc(x, k[])) −→ att0(x)

s-event(o, precise(M2))−→ att0(M2)

att0(M1)

att0(M2) s-event(o[], precise(M2))

I

109

In previous sections, we used triangle nodes to graphically represent derivations. In this
section, we will also use dashed triangle nodes to graphically represent conjunction of deriva-
tions. For example, the following is a graphical representation of a derivation of a fact Cσ at
step τ . The root is labeled by the clause F ∧H −→ C. DF represents the derivation of Fσ at
step τ ′. H is a conjunction of n facts and possibly a constraint formula. DH here represents
the n derivations of the n facts of Hσ respectively at step τ1, . . . , τn. We may omit the labels
on the edges when they are not relevant for the proof, for the sake of readability.

F ∧H −→ C

DF DH

Cσ, τ

Fσ, τ ′ Hσ, (τ1, . . . , τn)

C.1 Preamble

To show the soundness of the derivation, we also define the size of a derivation, the notion of
basic derivation of natural numbers as well as the notion of (strictly) selection free derivation.

Definition 36. Given k ∈ N, we say that a derivation D is a basic derivation of k if there
exists n ∈ N such that D is the derivation with a unique leaf labeled by −→ attn(0) and all
internal nodes (including the root) are labeled by the clause attn(x) −→ attn(succ(x)).

In the rest of this section, we will call clauses for natural numbers the clauses −→ attn(0)
and attn(x) −→ attn(succ(x)).

Definition 37. Let D be a derivation. We define the size of D, denoted |D|, as the number
of nodes η in D such that:

• η is not labeled by a clause −→ s-event(o, ev) for all o, ev; and

• the sub-derivation rooted by η is not a basic derivation of some natural number.

We say that D is selection free (resp. strictly selection free) when for all all nodes (resp.
all nodes different from the root) of D labeled by H −→ C, sel(H −→ C) = ∅.

We also show that the set of clauses we initially generate from the protocols and the
subsequent sets of clauses obtained through the saturation procedure are well originated.

Lemma 28. Let CI = ρ0, P0,A0 be an initial instrumented configuration. Let n ∈ N. Let Sp
be a set of predicates. Let L,Li be two sets of ProVerif lemmas.

The sets C = CP(CI , n) ∪ CA(CI) and saturate
Sp
L,Li(C) are well originated.

Proof. For CA(CI), the proof directly holds by a quick look at the clauses. Notice that for
the clause (Rf), the rewrite rules generated by ProVerif ensure that all variables in the
right-hand side of the rewrite rule occur in the left-hand side of the rule.

For CP(CI , n), the clauses being generated from a closed process, variables are only bound
and introduced by either an input or a table lookup. In both cases, the bound variables occur

110

in the hypotheses within a fact that satisfies the origination property. The term evaluation
x = D also binds the variable x but that is directly replaced by the result of the evaluation of
D when generating the clauses. The second item of the well originated property is satisfied by
definition of the translation of [[phase n′;P,O, I]]nHρ since clauses are only generated when
n′ > n.

To prove that saturate
Sp
L,Li(C) is well originated, it suffices to show that the application of

any of the transformation rules on a well originated set of clauses results in a well originated
set of clauses. Most of the rules are either applying a substitution on a clause preserving the
origination property or removing a clause completely from the set. There are two particular
cases: the resolution rule and the application of lemmas. In the former case, (using the
notation of Section 5), notice that if F was a fact attn(M), msgn(N,M) or tablen(M) then
all the variables in Fσ would occur accordingly in Hσ since Fσ = Cσ and H −→ C is well
originated. In the latter case, the lemmas can indeed introduce new variables that do not
occur anywhere else (typically the existential variables in the lemma). However a lemma can
only add events and formulas in the hypothesis of the clause which are not considered in the
origination property.

Property on ProVerif lemmas For the proof of both Theorem 2 and for the proof of
Theorem 4, we will need to show the soundness of the transformation rules that apply lemmas
and inductive lemmas. We show below a generic result that will be reused in both proofs.

Lemma 29. Let CI be an initial instrumented configuration. Let Sp be a set of predicates.
Let L, Li be two sets of ProVerif IO-nIO-compliant lemmas. Let T ∈ tracenIOIO (CI ,−→i) and
M be a multiset such that HypL,Li(T,M) holds. Let ψ ∈ L ∪ Li such that ψ = (

∧n
i=1 Fi ⇒∨m

j=1E1,j ∧ . . . ∧ E`j ,j ∧ φj).
For all substitutions σ, for all steps τ1, . . . , τn, if T, τ1 `nIOIO F1σ, . . . , T, τn `nIOIO Fnσ and

either ψ ∈ L or {{τ1, . . . , τn}} <m M then there exist j ∈ {1, . . . ,m}, a substitution σ′ and
τ ′1, . . . , τ

′
`j

steps such that:

• for all i ∈ {1, . . . , n}, Fiσ = Fiσ
′

• for all k ∈ {1, . . . , `j}, τ ′k ≤ max(τ1, . . . , τn) and T, τ ′k `
nIO
IO Ek,jσ

′

• `nIOIO φjσ
′

Proof. By hypothesis, we know that T, τ1 `nIOIO F1σ, . . . , T, τn `nIOIO Fnσ. Hence, let us
consider the trace T ′′ prefix of T such that maxstep(T

′′) = max(τ1, . . . , τn). To be able to apply
the properties given by HypL,Li(T,M), we would need to ensure that T ′′ ∈ tracenIOIO (CI ,−→i)
but that is not true in general for all prefixes of T . We show however that we can find a prefix
T ′ ∈ tracenIOIO (CI ,−→i) of T such that T ′′ is also a prefix of T ′ and that all transitions applied
between T ′′ and T ′ are applications of either the rule I-Msg or I-App.

Let us denote τ ′′ = maxstep(T
′′). Let us assume that T ′′ 6∈ tracenIOIO (CI ,−→i). Since T ∈

tracenIOIO (CI ,−→i), we deduce from Definitions 12 and 13 that there exist τ0 ≤ τ ′′ < τ ′0 such
that T [τ0] = n0, ρ,P, T ,A,Λ and one of the following properties holds

• T [τ0 − 1] −→i T [τ0] by the rule I-Phase, A = {Mi}m0
i=1 and T [τ0]

M1==⇒
r
. . .

Mm0===⇒
r
T [τ ′0].

• there exists M ∈ A \ data(T, τ0) and T [τ0]
M
==⇒

dr
T [τ ′0].

111

• τ ′0 = k + 1 where k is the greatest integer occurring in T and T [0]
I-App(0)−−−−−→i

1
=⇒

r
. . .

k
=⇒

r
T [k + 1]

• T [τ0 − 1]
msg(N,M)−−−−−−→i T [τ0] by the rule I-Out, j ≥ n, N ∈ A0 and T [τ0]

M
==⇒

dr
T [τ ′0 −

1]
msg(N,M)−−−−−−→i T [τ ′0] by the rule I-Msg.

Notice that between the steps τ ′′ and τ ′0, only rules I-Msg or I-App are applied. Thus, amongst
the possible pairs (τ0, τ

′
0) satisfying the above conditions, if we take the one with the biggest τ ′0

and the prefix T ′ of T with maxstep(T
′) = τ ′0, we therefore obtain that T ′ ∈ tracenIOIO (CI ,−→i).

Finally, since between steps τ ′′ and τ ′0, only rules I-Msg or I-App are applied, we deduce that
for all events E, for all steps τE , if T ′, τE `nIOIO E then τE ≤ τ ′′ (?).

Let us now prove the main property of the lemma. Let us do a case analysis on whether
ψ ∈ L or not:

• If ψ ∈ L then we know from HypL,Li(T,M) that (`nIOIO ,`i, tracenIOIO (CI ,−→i)) |= ψ. In
particular, we have (`nIOIO ,`i, {T ′}) |= ψ. Hence there exist an annotated formula Φ
w.r.t. (n, τ ′0) and a substitution σ′ such that Φ =

∨m
j=1E1,j ∧ . . .∧E`j ,j ∧φj ; Fiσ = Fiσ

′

for i = 1 . . . n and (`i, T ′, (τ1, . . . , τn, σ)) |= Φσ′.

• If ψ 6∈ L then we know that ψ ∈ Li and {{τ1, . . . , τn}} <m M by our hypotheses.
Since |T ′| ≤ |T | (T ′ is a prefix of T), we deduce that (T ′, {{τ1, . . . , τn}}) <ind (T,M).
Therefore, we obtain that IHψ(T ′, {{τ1, . . . , τn}}) holds. By definition, it allows us to
deduce that once again, there exist an annotated formula Φ w.r.t. (n, τ ′0) and a sub-
stitution σ′ such that Φ =

∨m
j=1E1,j ∧ . . . ∧ E`j ,j ∧ φj ; Fiσ = Fiσ

′ for i = 1 . . . n and
(`i, T ′, (τ1, . . . , τn, σ)) |= Φσ′.

In both cases, (`i, T ′, (τ1, . . . , τn, σ)) |= Φσ′ implies the existence of j ∈ {1, . . . ,m} and some
partial functions µ1, . . . , µ`j such that for all k ∈ {1, . . . , `j}, T ′, µk(τ1, . . . , τn, σ) `i Ek,jσ′
and `i φjσ′. Note that since E1,j , . . . , E`j ,j are events and φj is a formula, we deduce that
T ′, µk(τ1, . . . , τn, σ) `nIOIO Ek,jσ

′ and `nIOIO φjσ
′. Moreover, thanks to property (?) that we

previously showed, we also deduce that µk(τ1, . . . , τn, σ) ≤ τ ′′ = max(τ1, . . . , τn). Denoting
µk(τ1, . . . , τn, σ) by τ ′k allows us to conclude.

Clauses from Cstd preserved by saturation. To prove the soundness of the saturation
procedure, we will rely on the fact that the clauses from Cstd are always contained in our
main set of clauses. Hence, we need to show that the saturation procedure does not alter nor
remove them.

Lemma 30. Let C be a set of well-originated selection-free clauses. Assume that C =
simplify

Sp
L,Li({R})(C). Let D be a partial derivation of some fact F from C. For all derivation

contexts Dc and partial derivations D′ such that D = Dc[D′], if the root’s incoming edge of
D′ is labeled by attn(x) for some variable x, then D′ contains a branch that is a sequential
application of clauses atti(y) −→ atti+1(y) and there exists j ≤ n such that attj(y) ∈ Fus(D).

Proof. We prove this result by induction on the size of D′. In the base case, D′ is in fact a leaf.
If the leaf is unlabeled, then the result directly holds since incoming edges of unlabeled leaves
are in Fus(D). If the leaf is labeled, then it must be labeled by a clause R of the form −→ C
such that R w−→ attn(x). Thus there exists σ such that Cσ = attn(x) and so C = attn(y) for

112

some variable y. However, R must be a clause from C meaning that R must be well originated
which is in contradiction with the fact that C = attn(y) and R does not have hypotheses.

In the inductive step, we know that the child of the root of D′ is labeled by a clause
R = (H −→ C) ∈ C. Furthermore, if H1, . . . ,Hm are the labels of the outgoing edges of the
child of the root of D′, then R w H1 ∧ . . . ∧ Hm −→ attn(x). Hence there exists σ such that
Cσ = attn(x) and Hσ ⊆m {{H1, . . . ,Hm}}. Cσ = attn(x) implies that C = attn(y) for some
variable y. Note that R is by hypothesis selection free since R ∈ C. Hence, with attn(y) being
unselectable, we deduce from Definition 19 that all facts in H are unselectable. Furthermore,
R is also well-originated. Hence by Definition 21, we deduce that there exists n′ ≤ n such
that attn′(y) ∈ H. By definition of a partial derivation (last item), we obtain that R is in
fact the clause attn−1(y) −→ attn(y). Since R w H1 ∧ . . . ∧ Hm −→ attn(x), we deduce that
Hj = attn−1(x) for some j ∈ {1, . . . ,m} meaning that we can apply our inductive hypothesis
on the derivation of Hj to conclude.

Lemma 31. • Let C be a set of well originated clauses containing Cstd. If C′ is the set
of clauses obtained from C by applying the rule Taut, Red, Att, Rφ, DataHyp, DataCl,
Nat, NatCl, Lem(L,Sp) or Ind(Li,Sp) then Cstd ⊆ C′.

• A clause from Cstd cannot be subsumed by a different well-originated, simplified clause.

• Let C be a set of well originated, simplified clauses containing Cstd. If C′ is the set of
clauses obtained from C by applying the rule GRed(Sp), then Cstd ⊆ C′.

As a consequence of the first item, if C is a set of well originated clauses containing Cstd,
then Cstd ⊆ simplify

Sp
L,Li(C) and as consequence of the last two items, if C is a set of well

originated, simplified clauses containing Cstd, then Cstd ⊆ condenseSp(C).

Proof. Item 1: Notice that the rules Lem(L,Sp) and Ind(Li,Sp) specifically prohibit their
application on clauses from Cstd hence the result directly holds for these two rules. The rule
Taut cannot be applied since hypotheses of clauses in Cstd are different from their conclusion.
Rules Rφ and Nat cannot be applied on Cstd as they do not contain any formula. The rule
DataCl explicitly prohibits its application on clauses (Rfg) with g ∈ Fdata. The rule NatCl
also cannot be applied on R when g ∈ {succ; zero} by definition of the rule. The rule DataHyp
explicitly prohibits its application on clauses (Rfπgi) for all g ∈ Fdata and i. Finally, rules Red
and Att cannot be applied on Cstd as the hypotheses of these rules cannot be met on these
clauses. We therefore conclude that Cstd ⊆ C′.

Item 2: Let us now show that a clause from Cstd cannot be subsumed by a different well-
originated, simplified clause. Consider a clause (Rfg) with g ∈ Fdata, i.e. a clause R =
atti(x1) ∧ . . . ∧ atti(xn) −→ atti(g(x1, . . . , xn)). Let R′ = (H ∧ φ −→ C) be a well-originated,
simplified clause such that R′ w R and R 6= R′. By definition, we deduce that there exists σ
such that :

• Cσ = atti(g(x1, . . . , xn))

• Hσ ⊆m {{atti(x1); . . . ; atti(xn)}}

• `o φσ

Hσ ⊆m {{atti(x1); . . . ; atti(xn)}} implies that H is of the form atti(y1) ∧ . . . ∧ atti(yk) with
k ≤ n. Moreover, w.l.o.g. we have yjσ = xj for all j ∈ {1, . . . , k}. Since R′ is simplified, the

113

rule DataCl leaves R′ unchanged. Hence, we deduce that C = atti(y) for some variable y and
yσ = g(x1, . . . , xn). However, R′ is well originated which would imply that y = yj for some
j ∈ {1, . . . , k}. We have a contradiction since yσ = f(x1, . . . , xn) and yjσ = xj .

Consider now a clause (Rfπgi) with g ∈ Fdata and i integer, i.e. a clause R = attn(g(x1, . . . ,

xn)) −→ attn(xi). Let R′ = (H ∧ φ −→ C) be a well-originated, simplified clause such that
R′ w R and R 6= R′. By definition, there exists σ such that Cσ = attn(xi) and Hσ ⊆m
{{attn(g(x1, . . . , xn))}}. Since Cσ = attn(xi), we deduce that C = attn(y) with yσ = xi.
Moreover, R′ being well-originated and Hσ ⊆m {{attn(g(x1, . . . , xn))}}, we deduce that H =
attn(u) with y ∈ fv(u) and uσ = g(x1, . . . , xn). However, R′ is simplified, so the rule DataHyp
leaves R′ unchanged. Hence, with uσ = g(x1, . . . , xn) we deduce that u must be a variable;
and so y ∈ fv(u) implies u = y. We have a contradiction since uσ = g(x1, . . . , xn) and
yσ = xi.

Consider now a clause (Rap), i.e. a clause R = attn(x) −→ attn+1(x). Let R′ = (H∧φ −→ C)
be a well-originated, simplified clause such that R′ w R and R 6= R′. By definition, there
exists σ such that Cσ = attn+1(x) and Hσ ⊆m {{attn(x)}}. Hence C = attn+1(y). Moreover,
R′ being well originated, we deduce that H = attn(y) which implies that R = R′ and so we
obtain a contradiction (since we assume R 6= R′).

Finally, consider a clause (Rl), i.e. a clause R = msgn(x, y) ∧ attn(x) −→ attn(y). Let
R′ = (H ∧ φ −→ C) be a well-originated, simplified clause such that R′ w R and R 6= R′.
Therefore, we deduce the existence of a substitution σ where R′ can only be one of the
following clauses:

• attn(x′) −→ attn(y′) with x′σ = x and y′σ = y

• msgn(x′, y′) −→ attn(z′) with x′σ = x, y′σ = y and z′σ = y

• −→ attn(y′) with y′σ = y

None of these clauses are well originated (even in the second case when taking y′ = z′) which
is in contradiction with our hypothesis on R′.

Item 3: Let us prove that the rule GRed(Sp) cannot be applied on clauses from Cstd. Consider
a selection free clause R = (H −→ F) from Cstd. Moreover, consider a partial derivation D of
F from the selection free clauses of C \ {R}. For the rule GRed(Sp) to be applied, we also
require that Fus(D) −→ F w H −→ F . We do a case analysis on the clause R.

Case R being a clause (Rfg) with g ∈ Fdata, i.e. a clause R = atti(x1) ∧ . . . ∧ atti(xn) −→
atti(g(x1, . . . , xn)): Consider the child η of the root of D and let us denote by R′ = (H −→ C)
the clause labeling η. By definition of a partial derivation, if η has m outgoing edges labeled
by H1, . . . ,Hm then R′ w H1∧ . . .∧Hm −→ atti(g(x1, . . . , xn)). Hence there exists σ such that
Cσ = atti(g(x1, . . . , xn)). Note that R′ is simplified, i.e. the rule DataCl cannot be applied
on it. Hence we deduce that C = atti(y) for some variable y such that yσ = g(x1, . . . , xn).
Since atti(y) is an unselectable fact and R′ is selection free, we deduce from Definition 19
that all facts in H are unselectable. Moreover, with R′ being well-originated, we obtain that
attj(y) ∈ H for some j ≤ i. Since the rule Taut cannot be applied on R′, we deduce that j < i.
By applying Lemma 30, we deduce that there exist j′ and y′ such that attj′(y

′) ∈ Fus(D) with
j′ < i. However Fus(D) −→ F w H −→ F , so the phase of all facts in Fus(D) is i, which leads
to a contradiction.

114

Case R being a clause (Rfπgi) with g ∈ Fdata and i integer: By definition, the clause is not
selection free so the rule GRed(Sp) cannot be applied on it.

Case R being a clause (Rap), i.e. R = attn(x) −→ attn+1(x). As showed in Lemma 30,
the partial derivation must contain a branch of sequential applications of rules (Rap). In our
case, it would imply that the clause R was used in the partial derivation D which contradicts
our hypotheses.

Case R being a clause (Rl), i.e. a clause R = msgn(x, y) ∧ attn(x) −→ attn(y). The clause
R is not selection-free, so GRed(Sp) cannot be applied on it, which allows us to conclude.

Preamble to lemmas. We now focus on the core properties satisfied by our transformation
rules on clauses. To avoid repeating the same hypothesis in the following lemmas, we consider
the following preamble for all the lemmas in this section:

Let CI be an initial instrumented configuration. Let Sp be a set of predicates. Let L, Li
be two sets of ProVerif IO-nIO-compliant lemmas. Let T ∈ tracenIOIO (CI ,−→i) and M
be a multiset such that HypL,Li(T,M) holds.

Notice that this preamble corresponds to the hypotheses of Theorem 2.

C.2 Soundness of simplify
Sp
L,Li({R})

Lemma 32. Let C be a well-originated set of clauses containing Cstd and Ce(T). Let R be a
clause. Let DF0 = D[DR] be a derivation of some fact F0 at step τ0 from C ∪ {R} such that
{{τ0}} ≤mM and nodes in DR are labeled by clauses from C except the root that is labeled by
R and T,Sp, nIO ` DF0.

There exist two derivation contexts Dπ[_], D′[_] and a derivation D′R such that:

1. D[_] = D′[Dπ[_]]

2. Dπ[_] is a context derivation with a unique hole and whose nodes are labeled by a clause
attn(f(x1, . . . , xm)) −→ attn(xi) for some f ∈ Fdata and i ∈ {1, . . . ,m}

3. D′R is a derivation from C ∪ simplify
Sp
L,Li({R}) such that all nodes except the root are

labeled by clauses from C.

4. T,Sp, nIO ` D′[D′R]

5. |D′R| ≤ |Dπ[DR]|

6. if DR is strictly selection free then D′R is strictly selection free.

Proof. By definition, simplify
Sp
L,Li({R}) is the repeated application on {R} of the rules Taut,

Red, Att, Rφ, DataHyp, DataCl, Nat, NatCl, Lem(L,Sp) and Ind(Li,Sp). Thus, the com-
putation of simplify

Sp
L,Li({R}) can be seen as sequence C0, . . . ,CN where C0 = {R}, CN =

simplify
Sp
L,Li({R}) and for all i ∈ {1, . . . , N}, Ci is obtained from Ci−1 by application of one

the rules Taut, Red, Att, Rφ, DataHyp, DataCl, Nat, NatCl, Lem(L,Sp) and Ind(Li,Sp).
The proof of the lemma is thus done by induction on N by showing that the properties

stated in the lemma hold for all i ∈ {0, . . . , N}. In particular, for item 3, we prove that D′R
is a derivation from C∪Ci such that all nodes except the root are labeled by clauses from C.

115

Note that by Lemma 31, we know that Ci contains Cstd for all i ∈ {1, . . . , N} since C contains
Cstd.

Base case i = 0: Since C0 = {R}, the result directly holds by taking Dπ the derivation context
containing just a hole (no other node) and D′R = DR.

Inductive step i > 0: In such a case, we apply our inductive hypothesis on i−1 which gives us
the existence of D′′π[_], D′′[_] and D′′R satisfying the inductive properties. In particular, D′′R is a
derivation from C∪Ci−1 such that all nodes except the root are labeled by clauses from C. Let
us look at the transformation applied on Ci−1 to obtain Ci. Notice that all the transformation
rules only affect one clause at a time. Thus, there exists R′ such that Ci−1 = C′i−1 ∪ {R′}
and Ci = C′i−1 ∪ C′ where C′ is the result of the application of a transformation rule on R′.
Hence, if the root of D′′R is labeled by a clause of C′i−1 or C, the result trivially holds by taking
Dπ[_] = D′′π[_], D′[_] = D′′[_] and DR = D′R. Otherwise, the root of D′′R is labeled by R′.
Note that by definition of the transformation rules, R′ cannot be a clause (Rf) for a data
constructor function symbol or one of its projections. Thus, T,Sp, nIO ` D′′[D′′R] implies that
all derivations D′′′ directly outgoing R′ satisfy T,Sp, nIO ` D′′′. We do a case analysis on the
transformation rule applied on R′:

• Rule Taut: In such a case R′ is of the form F ∧H −→ F and D′′R is some derivation of Fσ
at some step τ for some substitution σ. Since F is also in the hypothesis of R′, there
exists a derivation DF of Fσ at some step τ ′. Note that since T,Sp, nIO ` D′′[D′′R], we
deduce that τ ′ ≤ τ . Thus, we can take for D′R the derivation DF with Fσ, τ as incoming
edge, Dπ[_] = D′′π[_] and D′[_] = D′′[_]. Since we removed a node, we directly have
that |D′R| ≤ |D′′R| and so |D′R| ≤ |Dπ[DR]|. Moreover T,Sp, nIO ` DF and since τ ′ ≤ τ ,
we have T,Sp, nIO ` D′[D′R]. Finally, if DR is strictly selection free then D′′R is strictly
selection free by our inductive hypothesis which implies that DF is selection free which
implies that DF is strictly selection free.

The derivation D′′R

F ∧H −→ F

DF DH

Fσ, τ

Fσ, τ ′

The derivation D′R

DF

Fσ, τ

• Rule Red: In such a case, R′ is of the form H ′ ∧ H ∧ φ −→ C such that H ′σ ⊆ H,
φ |= φσ and dom(σ) ∩ fv(H,C) = ∅. Moreover, by Definition 17 of a derivation, there
exist conjunctions of derivations DH ,D′H and σ′ such that D′′R is some derivation of Cσ′

at some step τ , `i φσ′ and DH and DH′ are the conjunction derivations of Hσ′ and
H ′σ′ respectively. We build the derivation D′R by replacing the label of the root with
H ∧ φσ −→ C and by only keeping DH as outgoing derivation. Note that for D′R to
be a derivation, we need to show that `i φσσ′. By hypothesis, φ |= φσ hence `i φσ′
implies `i φσσ′. We conclude by taking Dπ[_] = D′′π[_] and D′[_] = D′′[_]. The desired
properties on Dπ[_],D′[_] and D′R are a direct consequence of the inductive hypothesis.

116

The derivation D′′R

H ′ ∧H ∧ φ −→ C

DH′ DH

Cσ′, τ

H ′σ′
Hσ′

The derivation D′R

H ∧ φσ −→ C

DH

Cσ′, τ

Hσ′

• Rule Att: In such a case, R′ is of the form atti(x)∧H ∧φ −→ C where x does not appear
in H,C. This case is similar to the previous one since we only remove the fact atti(x)
from the clause.

• Rule DataHyp: In such a case, R′ is of the form attn(g(M1, . . . ,Mm)) ∧H → C where
g ∈ Fdata and R′ 6= (Rfπgi) for all i. Moreover, D′′R is the derivation of Cσ at step τ

for some substitution σ and some step τ . Since T,Sp, nIO ` D′′[D′′R] and in particular
item 4, we deduce that the derivation for attn(g(M1, . . . ,Mm))σ is rooted by a node
labeled with the clause attn(x1)∧ . . .∧ attn(xm) −→ attn(g(x1, . . . , xm)). Hence D′′R is of
the following form:

The derivation D′′R

attn(g(M1, . . . ,Mm)) ∧H −→ C

attn(x1) ∧ . . . ∧ attn(xm) −→ attn(g(x1, . . . , xm))

. . .D1 Dm

DH

Cσ, τ

attn(g(M1, . . . ,Mm)σ), τ ′

attn(M1σ), τ1 attn(Mmσ), τm

Hσ

Thanks to T,Sp, nIO ` D′′[D′′R], we also know that τi ≤ τ ′ for all i ∈ {1, . . . ,m} and
τ ′ ≤ τ (note that if attn ∈ Sp then these inequalities are strict). By definition of the
transformation rule DataHyp, the clause R′ is replaced by attn(M1)∧ . . .∧ attn(Mm)∧
H −→ C. Since τi ≤ τ (or τi < τ when attn ∈ Sp) and T,Sp, nIO ` Di for all i ∈
{1, . . . ,m}, we can build the derivation D′R by directly using D1, . . . ,Dn as outgoing
derivations for the clause attn(M1) ∧ . . . ∧ attn(Mm) ∧H −→ C. We conclude by taking
Dπ[_] = D′′π[_] and D′[_] = D′′[_].

117

The derivation D′R

attn(g(M1)) ∧ . . . ∧ attn(g(Mm)) ∧H −→ C

Dm. . .D1

DH

Cσ, τ

attn(M1σ), τ1
attn(Mmσ), τm Hσ

• Rule DataCl: In such a case, R′ is of the form H −→ attn(g(M1, . . . ,Mm)) with g ∈
Fdata and R′ 6= (Rfg). The transformation rule replaces R′ with the set of clauses
{H −→ attn(Mi)}mi=1. Moreover, D′′R is the derivation of attn(g(M1, . . . ,Mm)σ) at step
τ for some substitution σ and some step τ . Since T,Sp, nIO ` D′′[D′′R] and in particular
item 4, we deduce that the node connected to the hole in D′′[_] is labeled with the
clause attn(g(x1, . . . , xm)) −→ attn(xi) for some i ∈ {1, . . . ,m}. Therefore, we can split
D′′[_] into two derivation contexts D′′1 [_] and Dπgi [_] such that D′′[_] = D′′1 [Dπgi [_]]

and Dπgi [_] contains a single node labeled with attn(g(x1, . . . , xm)) −→ attn(xi).

The derivation context Dπgi [_]

attn(g(x1, . . . , xm)) −→ attn(xi)

attn(Miσ), τi

attn(g(M1, . . . ,Mm)σ), τ

The derivation D′′R

H −→ attn(g(M1, . . . ,Mm))

DH

attn(g(M1, . . . ,Mm)σ), τ

Hσ

Since the transformation rule replaces R′ with the set of clauses {H −→ attn(Mi)}mi=1,
we can build the D′R of attn(Miσ) at step τi by using the clause H −→ attn(Mi). Notice
that contrary to the previous transformation rule, D′R and D′′R are not derivations of the
same fact.

The derivation D′R

H −→ attn(Mi)

DH

attn(Miσ), τi

Hσ

118

Since T,Sp, nIO ` D′′[D′′R], we deduce that τ ≤ τi (the inequality is strict when attn ∈
Sp). Hence, we obtain that D′′1 [D′R] is a derivation of F0 such that T,Sp, nIO ` D′′1 [D′R].
Since Dπgi [_] contains only a projection clause of a data constructor symbol, we can
define Dπ = Dπgi [D′′π[_]] and D′[_] = D′′1 [_] to obtainD[_] = D′[Dπ[_]] and T,Sp, nIO `
D′[D′R]. By our inductive hypothesis, |D′′R| ≤ |D′′π[DR]|. But |Dπgi [D′′R]| = |DH |+ 2 and
|D′R| ≤ |DH | + 1 (the inequality may be strict if D′R becomes the basic derivation of a
natural number). Thus, |D′R| ≤ |Dπgi [D′′R]| and so |D′R| ≤ |Dπ[DR]|.

• Rule Nat: If R′ is of the form H ∧ φ −→ C then by definition of the substitution, D′′R
is the derivation of the fact Cσ for some substitution σ and `i φσ. One can easily see
that the transformations applied in Nat either modify the clause R′ by replacing φ with
an equivalent constraint formula φ′, yielding the clause R′′ = H ∧ φ′ −→ C, or removes
R′ when φ is unsatisfiable. In the latter case, `i φσ in fact implies that the rule Nat
does not remove R′ since φ is satisfiable. There, we conclude by taking D′[_] = D′′[_],
Dπ[_] = D′′π[_] and D′R the derivation obtained from D′′R by replacing the label of the
root with R′′.

• Rule NatCl: In such a case, R′ is of the form H ∧ φ −→ attn(M) with φ |= nat(M)
and R′ 6∈ {(R+), (R0)}. Moreover, D′′R is the derivation of attn(Mσ) at step τ for
some substitution σ and some step τ . Since φ |= nat(M), we deduce that Mσ is
a natural number. By hypothesis, C′ contains the clauses Cstd and in particular the
clauses −→ attn(zero) and attn(x) −→ attn(succ(x)). We build D′R depending on whether
attn ∈ Sp or not.

– If attn ∈ Sp then T,Sp, nIO ` D′′[D′′R] implies that eitherM is a variable and T, τ `
attn(Mσ) orM is not a variable and soMσ ∈ A(T [τ]) (see item 4 of Definition 18).
In both cases, we deduce that Mσ ∈ A(T [τ]). But T ∈ tracenIOIO (CI ,−→i) meaning

that T is data compliant. In particular, T [0]
I-App(0)−−−−−→i

1
=⇒

r
. . .

Mσ
==⇒

r
T [Mσ + 1]

(where we see Mσ here as an actual natural number in N). Note that Mσ + 1 is
thus the smallest step in which Mσ occurs in the attacker knowledge. Therefore
Mσ + 1 ≤ τ meaning that we can take D′R as the basic derivation of Mσ such
that the incoming edge of the root is labeled by attn(Mσ), τ and for all other
edges, if the edge is labeled attn(k), τ ′ then τ ′ = k + 1. Since Mσ + 1 ≤ τ , we
deduce that T,Sp, nIO ` D′R. By taking D′[_] = D′′[_] and Dπ[_] = D′′π[_],
we obtain T,Sp, nIO ` D′[D′R]. By definition, |D′R| = 0 hence we trivially have
that |D′R| ≤ |Dπ[DR]|. Finally, since C′ contains the clauses −→ attn(zero) and
attn(x) −→ attn(succ(x)), we conclude that D′R satisfy the item 3 of the desired
properties, which allows us to conclude.

– If attn 6∈ Sp then we build D′R as being the basic derivation Mσ such that the
incoming edge of the root is labeled attn(Mσ), τ and the step of all other edges
is also τ . Note that having τ being the step of all edges still allows us to obtain
T,Sp, nIO ` D′R since attn 6∈ Sp. We conclude by taking D′[_] = D′′[_] and
Dπ[_] = D′′π[_].

• Rule Lem(L,Sp) and Ind(Li,Sp): We prove these two rules at the same time. We
distinguish two cases. Case 1 is when Ind(Li,Sp) is applied or Lem(L,Sp) is applied and

119

all facts Fi are matched with hypotheses of R′. Case 2 is when Lem(L,Sp) is applied
and a fact Fi is matched with the conclusion of R′.

In case 1, there exist a substitution σ and ψ = (
∧n
i=1 Fi ⇒

∨m
j=1 φj) ∈ L ∪ Li such that

R′ = (dF1σesure ∧ . . . dFnσesure ∧H −→ C) and for all i ∈ {1, . . . , n}, pred(Fi) ∈ Sp.
Thus, in case 1, D′′R is the derivation of Cσ′ at step some τ for some σ′ as presented
below:

The derivation D′′R in Case 1

dF1σesure ∧ . . . ∧ dFnσesure ∧H −→ C

Dn. . .D1
DH

Cσ′, τ

dF1σesureσ′, τ1 dFnσesureσ′, τn
Hσ′

In case 2, w.l.o.g. there exist a substitution σ and ψ = (
∧n
i=1 Fi ⇒

∨m
j=1 φj) ∈ L such

that R′ = (dF2σesure∧ . . . dFnσesure∧H −→ C), dF1σemay = C and for all i ∈ {1, . . . , n},
pred(Fi) ∈ Sp.
By denoting τ1 = τ , we obtain that in case 2, D′′R is the derivation of Cσ′ at step some
τ for some σ′ as presented below:

The derivation D′′R in Case 2

dF2σesure ∧ . . . ∧ dFnσesure ∧H −→ C

Dn. . .D2
DH

Cσ′, τ = τ1

dF2σesureσ′, τ2 dFnσesureσ′, τn
Hσ′

Recall that R′ 6∈ Cstd by definition of the rules. Furthermore, also recall for all events
E and steps τ ′, T, τ ′ `nIOIO E if and only if T, τ ′ `nIOIO dEesure if and only if T, τ ′ `nIOIO

dEemay. Recall that D′′[D′′R] is a derivation of some fact F0 at step τ0 with {{τ0}} ≤mM.
Hence since T,Sp, nIO ` D′′[D′′R] and for all i ∈ {1, . . . , n}, pred(Fi) ∈ Sp, we deduce that
for all i ∈ {1, . . . , n}, T, τi `nIOIO dFiσesureσ′. Moreover, in case 1, we have τi < τ ≤ τ0

for all i ∈ {1, . . . , n}, meaning that {{τ1, . . . , τn}} <m {{τ0}} ≤mM. Thus, in both cases 1
and 2, we can apply Lemma 29 which allows us to deduce that there exist j ∈ {1, . . . ,m},
a substitution σ′′, τ ′1, . . . , τ ′j steps some events E1, . . . , E` and a formula φ′ such that

– φj = E1 ∧ . . . ∧ E` ∧ φ′

– for all i ∈ {1, . . . , n}, Fiσσ′ = Fiσ
′′

– for all k ∈ {1, . . . , `}, τ ′k ≤ max(τ1, . . . , τn) and T, τ ′k `
nIO
IO Ekσ

′′

120

– `nIOIO φ′σ′′

In Case 1, we already showed that τi < τ ≤ τ0 for all i ∈ {1, . . . , n}. Hence, max(τ1, . . . ,
τn) < τ and so for all k ∈ {1, . . . , `}, τ ′k < τ . In Case 2, we do not have max(τ1, . . . , τn) <
τ since τ1 = τ . However, we know by hypothesis that for all k ∈ {1, . . . , `},mgu(Ekσ,C) =
⊥. Thus Ekσσ′ and Cσ′ are not unifiable and since Fiσσ′ = Fiσ

′′ for all i ∈ {1, . . . , n},
we conclude that Ekσ′′ 6= Cσ′. But we already showed that T, τ ′k `

nIO
IO Ekσ

′′ and
T, τ `nIOIO Cσ′. Since Ekσ′′ is an event, we obtain that τ ′k 6= τ . With τ ′k ≤ max(τ1, . . . , τn)
and τ1 = τ , we conclude that τ ′k < τ .

We can now build the derivationD′R by replacing the clauseR′ with the clause dFrσesure∧
. . . dFnσesure ∧H ∧ dE1σesure ∧ . . .∧ dE`σesure ∧ φσ −→ C and r = 1 (resp. 2) in Case 1
(resp. 2) as follows:

The derivation D′R

dFrσesure ∧ . . . ∧ dFnσesure ∧H ∧ dE1σesure ∧ . . . ∧ dE`σesure ∧ φσ −→ C

Dr . . . Dn DH −→ dE1σ
′′esure . . . −→ dE`σ′′esure

Cσ′, τ

dFrσesureσ′, τr dFnσesureσ′, τn dE1σ
′′esure, τ ′1 dE`σ′′esure, τ ′`Hσ′

Let us take Dπ[_] = D′′π[_] and D′[_] = D′′[_]. Since T,Sp, nIO ` D′′[D′′R], the
derivation D′R adding only subderivations containing only events and the fact that
τ ′1, . . . , τ

′
` < τ , we deduce that T,Sp, nIO ` D′[D′R]. Moreover, the size of a deriva-

tion does not count the nodes labeled by an event clause (i.e. −→ s-event(o, ev)) hence
|D′R| = |D′′R|. With our inductive hypothesis, we obtain |D′R| ≤ |Dπ[DR]|. Finally, by
definition of the selection function, events are unselectable facts. Hence if D′′R is strictly
selection free then so is D′R. This allows us to conclude.

Corollary 2. Let C be a well-originated set of clauses containing Cstd. Let R be a clause. Let
DF0 be a derivation of some fact F0 at step τ0 from C∪{R}∪Ce(T) such that {{τ0}} ≤mM and
T,Sp, nIO ` DF0. There exists a derivation D′F0

of F0 at step τ0 from C ∪ simplify
Sp
L,Li({R}) ∪

Ce(T) such that T,Sp, nIO ` D′F0
.

Proof. Note that when R ∈ C or simplify
Sp
L,Li({R}) = {R}, the result trivially holds. Other-

wise, notice that DF0 that is also a derivation from C ∪ {R} ∪ Ce(T) ∪ simplify
Sp
L,Li({R}). We

prove the result by induction on the number N of nodes in DF0 labeled with the clause R.
When N = 0 (the base case), DF0 is a derivation from C ∪ Ce(T) ∪ simplify

Sp
L,Li({R}) hence

the result holds with D′F0
= DF0 . When N > 0 (the inductive step), we can take the smallest

subderivation of DF0 that has R as root, i.e. DF0 = D[DR] where the root of DR is labeled by
R and all other nodes in DR are labeled by clauses of C∪Ce(T)∪ simplify

Sp
L,Li({R}). Hence we

can apply Lemma 32 with C0 = C ∪ Ce(T) ∪ simplify
Sp
L,Li({R}) to obtain that there exist two

derivation contexts Dπ[_], D′[_] and a derivation D′R such that D[_] = D′[Dπ[_]] (item 1),
D′R is a derivation from C0∪simplify

Sp
L,Li({R}) = C0 (item 3) and T,Sp, nIO ` D′[D′R] (item 4).

121

Note that D[_] = D′[Dπ[_]] and DF0 = D[DR] ensure that D′[D′R] is also a derivation of F0

at step τ0. Since DR was rooted by R and R 6∈ C0, we deduce that D′[D′R] has strictly fewer
nodes labeled by R than the derivation DF0 . Hence we conclude by applying the inductive
hypothesis on D′[D′R].

Corollary 3. Let C be a well-originated set of clauses containing Cstd. Let DF0 be a derivation
of some fact F0 at step τ0 from C∪Ce(T) such that {{τ0}} ≤mM and T,Sp, nIO ` DF0. There
exists a derivation D′F0

of F0 at step τ0 from simplify
Sp
L,Li(C)∪Ce(T) such that T,Sp, nIO ` D′F0

.

Proof. Noticing that simplify
Sp
L,Li({R1, . . . , Rn}) = simplify

Sp
L,Li({R1})∪. . .∪simplify

Sp
L,Li({Rn}),

the result directly follows from Corollary 2.

C.3 Soundness of condenseSp(C)

Lemma 33. Let C be a well originated set of clauses containing Cstd. Let R be a well
originated clause. Let DF0 = D[DR] be a derivation of some fact F0 at step τ0 from C ∪ {R}
such that all nodes in DR are labeled by clauses from C except the root that is labeled by R and
T,Sp, nIO ` DF0.

If there exists a well originated clause R′ such that R′ w R then there exists D′R such that:

1. D′R is a derivation from C∪{R′} such that all nodes except the root are labeled by clauses
from C.

2. T,Sp, nIO ` D[D′R]

3. |D′R| ≤ |DR|

4. if DR is strictly selection free then D′R is strictly selection free.

Proof. Assume that R′ w R. By definition and by denoting R = H2 ∧ H ′2 ∧ φ2 −→ C2 and
R′ = H1 ∧ φ1 −→ C1, we deduce that there exists a substitution σ such that C1σ = C2,
H1σ = H2 and φ2 |= φ1σ. Moreover, since DR is a derivation whose root is labeled by R,
there exist two conjunctions of derivations DH2 , DH′

2
and a substitution σ′ such that DR is

some derivation of C2σ
′ at some step τ , `i φ2σ

′ and DH2 , DH′
2
are the conjunction derivations

of H2σ
′ and H ′2σ′ respectively.

Note that C2σ
′ = C1σσ

′ and H2σ
′ = H1σσ

′. Hence, we build the derivation D′R by
replacing R in R′ as root and by only keeping the conjunction derivation DH2 . Note that
`i φ1σσ

′ and φ2 |= φ1σ imply `i φ1σσ
′. Hence D′R is really a derivation.

The derivation DR

H ′2 ∧H2 ∧ φ2 −→ C2

DH′
2

DH2

C2σ
′, τ

H ′2σ
′

H2σ
′

The derivation D′R

H1 ∧ φ1 −→ C1

DH2

C2σ
′, τ

H2σ
′

122

Items 1, 3 and 4 of the lemma are directly obtained by construction of D′R. Thanks to
Lemma 31, we know that R 6= (Rl) and R is not the clause (Rf) for a data constructor or one of
its projections. We can therefore deduce T,Sp, nIO ` D[D′R] directly from T,Sp, nIO ` D[DR]
which allows us to conclude.

Corollary 4. Let C = C′∪{R;R′} be a well-originated set of clauses containing Cstd such that
R′ w R. Let DF0 be a derivation of some fact F0 at step τ0 from C such that T,Sp, nIO ` DF0.
There exists a derivation D′F0

of F0 at step τ0 from C′ ∪ {R′} such that T,Sp, nIO ` D′F0
.

Proof. The proof is done by induction on the number of nodes labeled by R, the inductive
step being a direct application of Lemma 33. Note that by Lemma 31, the clause in Cstd are
also contained in the set C′ ∪ {R′}.

Lemma 34. Let C be a set of well originated, simplified clauses containing Cstd. Let F
be a fact (not necessarily closed) and τ a step. Let Dp be a partial derivation of F from
{R ∈ C | sel(R) = ∅} such that Fus(Dp) = U1 ∧ . . . ∧ Un ∧ φu where U1, . . . , Un are facts and
φu is a formula.

If there exist a substitution σ, some steps τ1, . . . , τn and some derivations D1, . . . ,Dn such
that `nIOIO φuσ, for all i ∈ {1, . . . , n},

• Di is a derivation of Uiσ at step τi from C

• if pred(Ui) ∈ Sp then τi < τ else τi ≤ τ

• T,Sp, nIO ` Di

• if pred(F) ∈ Sp then T, τ `nIOIO Fσ

then there exists a derivation D of Fσ at step τ from C such that:

• T,Sp, nIO ` D

• if D1, . . . ,Dn are selection free then D is selection free

Proof. The first part of the proof consists of transforming the partial derivation Dp into a
context derivation Dc[_1, . . . ,_n] such that:

• a node η of Dp labeled by a clause R in Dp with incoming edge labeled U is transformed
into a node η′ in Dc[_1, . . . ,_n] also labeled by R with incoming edge labeled Uσ, τ .

• an unlabeled leaf from Dp whose incoming edge is labeled by a formula is removed in
Dc[_1, . . . ,_n] (as well as its incoming edges).

• an unlabeled leaf from Dp whose incoming edge is labeled by a fact, i.e. Ui for some
i ∈ {1, . . . , n}, is replaced in Dc[_1, . . . ,_n] by the hole _i with Uiσ, τi as incoming
edge.

With such context Dc[_1, . . . ,_n], we will obtain a derivation D′ = Dc[D1, . . . ,Dn] of Fσ at
step τ . We will show that this derivation is almost satisfied by the trace T w.r.t. Sp. In
particular, it will satisfy all items of Definition 18 other than Item 4. The second part of the
proof consists of transforming D′ into a derivation D that satisfies all items of Definition 18.

123

First let us show that Dc[_1, . . . ,_n] really corresponds to a context derivation, i.e. all
nodes in the context derivation should satisfy item 3 of Definition 17. Consider a node η′

of D′[_1, . . . ,_n] labeled by some clause R = H ∧ φ −→ C. By construction, we know that
there exists a node η in Dp labeled by R with incoming edge labeled U ′ and some outgoing
edges labeled U ′1, . . . , U ′m and some formula φ′ (w.l.o.g. we can always consider that there is at
most one outgoing edge of a node labeled by a formula). By definition of a partial derivation,
we also know that R w U ′1 ∧ . . . ∧ U ′m ∧ φ′ −→ U ′ thus there exists σ′ such that Cσ′ = U ′,
Hσ′ ⊆m U ′1 ∧ . . . ∧ U ′m and φ′ |= φσ′.

Consider the substitution σ′σ. Since Cσ′ = U ′ and Hσ′ ⊆m U ′1 ∧ . . . ∧ U ′m, we directly
obtain that Cσ′σ = U ′σ and Hσ′σ ⊆m U ′1σ ∧ . . . ∧ U ′mσ. Let us show that `nIOIO φσ′σ. Recall
by definition of a partial derivation that the outgoing edge labeled φ′ is the incoming edge
of an unlabeled leave. Hence, the formula φ′ is part of Fus(Dp), meaning that φu |= φ′. By
hypothesis, `nIOIO φuσ hence `nIOIO φ′σ. Since φ′ |= φσ′, we deduce that that `nIOIO φσ′σ. This
allows us to conclude that R w U ′1σσ′ ∧ . . . ∧ U ′mσσ′ −→ U ′σσ′.

Since by construction, U ′σσ′ is the label of the incoming edge of η′ and U ′1σσ′, . . . , U ′nσσ′

are the labels of its outgoing edges, we conclude that Dc[_1, . . . ,_n] is a context derivation.
Let us now show that the derivation D′ = Dc[D1, . . . ,Dn] satisfies Items 1 to 3 of Defini-

tion 18. Item 3 is trivially satisfied since the clauses have no labels in the saturation procedure.
Moreover, all internal nodes η′ in Dc[_1, . . . ,_n] are labeled by a selection free clause R′′. By
definition of the selection function, we know that (Rl) is not selection free and so R′′ 6= (Rl).
Thus Item 1 holds. Finally, by hypothesis of the lemma, we also know that the incoming edge
of η′ is also labeled by U ′σσ′, τ for some U ′ such that pred(U ′) 6∈ Sp by hypothesis of the
lemma. Hence, the derivation D′ = Dc[D1, . . . ,Dn] satisfies item 2 of Definition 18.

Let us now focus on the second part of the proof consisting of building the derivation
D from D′ such that D satisfies all items of Definition 18 and in particular Item 4. The
only problematic case we need to focus on is when a node η0 from Dc[_1, . . . ,_n] has an
incoming edge labeled by atti(f(M1, . . . ,Mm)) with f ∈ Fdata. Since the projection clauses
atti(f(x1, . . . , xm)) −→ atti(xk), for all k, are not selection free, they cannot be used in the
partial derivation Dp and so do not occur in D′[_1, . . . ,_n]. Thus to satisfy Item 4 of Defini-
tion 18, we need to build D such that the node η0 is labeled by the rule (Rff). We show how
to transform the derivation when one node of D′ does not satisfy this property; when several
nodes do not satisfy this property, it suffices to apply this transformation on each of these
nodes to obtain D.

Let us consider a node η of the derivation context Dc[_1, . . . ,_n] whose incoming edge is
labeled by the fact atti(M) and let us denote Dη the subderivation of Dc[D1, . . . ,Dn] rooted
in η. Note that for simplicity, we will assimilate the node η with its corresponding node in
the partial derivation Dp.

We want to characterise the derivation Dη by extracting from it the parts where clauses
(Rap) and (Rfg) with g ∈ Fdata are applied. We prove by induction on the size of Dη that
there exist {i1, . . . , ir} ⊆ {1, . . . , n} and some derivation contexts DFdata , DRpi1 ,. . . , DRpir such
that:

• Dη = DFdata [D′1, . . . ,D′q,D
Rp
i1

[Di1], . . . ,DRpir [Dir]];

• nodes of DFdata are only labeled by clauses (Rfg) for g ∈ Fdata;

• nodes of DRpi1 , . . . ,D
Rp
ir

are only labeled by clauses (Rap);

124

• D′1, . . . ,D′q are derivations of facts atti(U
′
1), . . . , atti(U

′
q) respectively at step τ1, . . . , τq

with for all k ∈ {1, . . . , q}, τk ≤ τ , root of U ′k is not in Fdata and atti ∈ Sp implies
τk < τ .

Notice that if the incoming edge of η is labeled by atti(f(M1, . . . ,Mm)) with f ∈ Fdata then
either η is an unlabeled leaf of the partial derivation Dp or η is labeled by a clause Rη = (Hη −→
Cη). In the latter case, we know that there exists σ′ such that Cησ′ = atti(f(M1, . . . ,Mm)).
However, since the clauses of C are simplified, the rule DataCl cannot be applied on Rη. Thus,
either Rη is the clause atti(x1)∧ . . .∧atti(xm) −→ atti(f(x1, . . . , xm)) or Cη = atti(x) for some
variable x. In the latter case, since Rη is well originated and Cη ∈ Fusel, we deduce that there
exists j such that attj(x) ∈ Hη. By Definition 20 of a partial derivation, we deduce that Rη
is in fact the clause atti−1(x) −→ atti(x).

We can now prove our statement by induction as mentioned. In the base case, η is a leaf of
the partial derivation Dp. We do a small case analysis: (i) The incoming edge of η is labeled
by Fη, τη such that Fη 6= atti(f(M1, . . . ,Mm)) for all f ∈ Fdata and terms M1, . . . ,Mm: In
such a case, either η is labeled by a clause without hypothesis in Dp, hence by definition of
the derivation context D′, τη = τ and pred(Fη) 6∈ Sp; or the corresponding node of η in Dp is
in fact an unlabeled leaf. In the latter case, there exists k ∈ {1, . . . , n} such that Dη = Dk
and τη = τk. Since by hypothesis T,Sp, nIO ` Dη, τη ≤ τ and if pred(Fη) ∈ Sp then τη < τ .
Thus, the result holds by taking the empty context for DFdata , q = 1, r = 0 and D′1 = Dη.
(ii) The incoming edge of η is labeled by Fη, τη such that Fη = atti(f(M1, . . . ,Mm)) for some
f ∈ Fdata and terms M1, . . . ,Mm: By the remark in the previous paragraph, we deduce that
in such a case, η is necessarily unlabeled in Dp meaning that atti(f(M1, . . . ,Mm)) ∈ Fus(Dp)
and so there exists k ∈ {1, . . . , n} such that Dη = Dk. Thus the result holds by taking DFdata
the empty context, q = 0, r = 1, i1 = k and DRpi1 the empty context.

In the inductive step, once again if the incoming edge is not labeled by atti(f(M1, . . . ,Mm))
for some f ∈ Fdata, M1, . . . ,Mm then we obtain the result by taking the empty context for
DFdata , q = 1, r = 0 and D′1 = Dη. Otherwise one of the following two cases occurs:

• η is labeled by atti(x1) ∧ . . . ∧ atti(xm) −→ atti(f(x1, . . . , xm)): In such a case, we have
D1
η, . . . , Dmη derivations respectively of atti(M1), . . . , atti(Mm) on which we can apply

our inductive hypothesis to directly obtain our result since the clause atti(x1) ∧ . . . ∧
atti(xm) −→ atti(f(x1, . . . , xm)) is the clause (Rff).

• η is labeled by atti−1(x) −→ atti(x): By Lemma 30, we deduce that Dp contains a branch
from the node corresponding to η that is a sequential application of rules attj(x) −→
attj+1(x) and there exists i′ ≤ i such that atti′(x) ∈ Fusel(Dp). Thus there exists k ∈
{1, . . . , n} such that the incoming edge of Dk is labeled by the fact atti′(f(M1, . . . ,Mm)).
Hence the result holds by taking DFdata the empty context, q = 0, r = 1 and i = i1 and
DRp1 the context corresponding to the sequential application of rules attj(x) −→ attj+1(x).

We showed that Dη = DFdata [D′1, . . . ,D′p,D
Rp
i1

[Di1], . . . , DRp
ir

[Dir]]. However, for all k ∈
{1, . . . , r}, the derivation Dik can be a derivation of some fact atti′(U) with U being rooted by
a data constructor function symbol. However, coming back to the hypotheses of the lemma,
we know that T,Sp, nIO ` Dik . Hence, if U is rooted by g ∈ Fdata, we deduce that the root of
Dik is labeled by the clause (Rfg), i.e. atti′(x1)∧ . . .∧atti′(xm) −→ atti′(g(x1, . . . , xm)) (Item 4
of Definition 18). Thus by applying a small induction on the size of Dik , we can show that
Dik = DFdataik

[Dik1 , . . . ,D
ik
`ik

] where for all ` ∈ {1, . . . , `ik},

125

• Dir` is a derivation of atti′(U
ik
`) at step τ ik` where U ik` is not rooted by a data constructor

function symbol;

• τ ik` ≤ τ and if atti′ ∈ Sp then τ ik` < τ ;

• nodes of DFdataik
are only labeled by clauses (Rfg) for some g ∈ Fdata.

Thus, by gathering U ′1, . . . , U ′q, U
i1
1 , . . . , U

i1
`i1

, . . . , U ir1 , . . . , U
ir
`ir

and renaming them V1, . . . , VN ,
we deduce that Dη can be written as D′c[DV1 , . . . ,DVN] where

• the nodes of D′c are either labeled by a clause (Rap) or (Rfg) for some g ∈ Fdata;

• for all k ∈ {1, . . . , N}, the incoming edge of DVk is labeled by attjk(Vk), τk where the
root of Vk is not a data constructor symbol and either τk ≤ τ and attjk 6∈ Sp; or τk < τ ,
T, τk `nIOIO attjk(Vk), attjk ∈ Sp and for all jk < j ≤ i, attj 6∈ Sp;

• M = CFdata [V1, . . . , VN] where CFdata is a term context composed only of data construc-
tor function symbols (recall the atti(M) was the fact label of the incoming edge of the
node η).

We transform the derivationD′c[DV1 , . . . ,DVN] into a derivationD′η by first applying the clauses
(Rap) to derive the fact atti(Vk) at step τ and second by applying the clauses atti(x1)∧ . . .∧
atti(x`) −→ atti(g(x1, . . . , x`)) with g occurring in CFdata to derive the fact atti(M) at step τ .

The derivation D′η

Clause (Rf)
at phase i

to build CFdata

. . .atti−1(x) −→ atti(x) atti−1(x) −→ atti(x)

attj1(x) −→ attj1+1(x) attjm(x) −→ attjm+1(x)

DV1 DVN

atti(M), τ

atti(V1), τ atti(VN), τ

attj1(V1), τ1 attjN (VN), τN

126

Note that the derivation D′η satisfies all items of Definition 18 and in particular Item 4
since the phase clauses (Rap) are only applied on attacker facts whose term is not rooted by
a data constructor function symbol. Therefore, to build D, we replace in D′ the derivation
D′c[DV1 , . . . ,DVN] by the derivation D′η, which allows us to obtain that T,Sp, nIO ` D.

Finally, since all clauses in Dp are selection free then so are the clauses in Dc[_1, . . . ,_n].
Moreover, in the second part of proof, we only added clauses (Rf) and (Rap) which are also
selection free. Thus, if D1, . . . ,Dn are selection free then DV1 , . . . ,DVN are selection free which
implies that D is selection free. Thus we conclude.

Lemma 35. Let C be a set of well originated, simplified clauses containing Cstd. Let R 6∈ Cstd
be a well originated, simplified clause. Let DF0 = D[DR] be a derivation of some fact F0 at
step τ0 from C∪ {R = H ∧ φ −→ F} such that {{τ0}} ≤mM and all nodes in DR are labeled by
clauses from C except the root that is labeled by R and T,Sp, nIO ` DF0.

If there exists Dp a partial derivation of F from C′ = {R′ ∈ C | sel(R′) = ∅} such that
Fus(Dp) −→ F w R and pred(Fs(Dp)) ∩ Sp = ∅ then there exists a derivation D′R from C such
that:

1. T,Sp, nIO ` D[D′R]

2. if DR is selection free then D′R is selection free.

Proof. Let us consider some notation. Let us write Fus(Dp) = U1∧. . . Un∧φu where U1, . . . , Un
are facts and φu is a formula. Moreover, since Fus(Dp) −→ F w H ∧ φ −→ F , there exist a
substitution σ and F1, . . . , Fn, H

′ such that Fσ = F , H = F1 ∧ . . . ∧ Fn ∧H ′ ∧ φ, Uiσ = Fi
for all i and φ |= φuσ.

Since DR is rooted by R, there exist a conjunction of derivations DH′ , some derivations
D1, . . . ,Dn and a substitution σ′ such that DR is a derivation of Fσ′ at some step τ , `nIOIO φσ′

and DH2 is a conjunction derivation of H ′σ′ and Di is a derivation of Fiσ′ at some step τi for all
i ∈ {1, . . . , n}. Since R 6∈ Cstd and in particular, R is not (Rl) nor a projection clause of a data
constructor function symbol, we deduce from T,Sp, nIO ` D[DR] that for all i ∈ {1, . . . , n},
T,Sp, nIO ` Di, τi ≤ τ and if pred(Ui) ∈ Sp then τi < τ . Note that `nIOIO φσ′ and φ |= φuσ
implies `nIOIO φuσσ

′.

The derivation DR

F1 ∧ . . . ∧ Fn ∧H ′ ∧ φ −→ F

D1 . . . Dn DH′

Fσ′, τ

F1σ
′, τ1 Fnσ

′, τn H ′σ′

We can apply Lemma 34 with the substitution σσ′, the steps τ1, . . . , τn and the derivations
D1, . . . ,Dn to obtain that there exists a derivation D′R of Fσσ′ = Fσ′ at step τ from C such
that T,Sp, nIO ` D′R and if D1, . . . ,Dn are selection free then D′R is selection free. Hence, we
directly obtain that T,Sp, nIO ` D[D′R]. Moreover, if DR is selection free then D1, . . . ,Dn are
selection free thus D′R is selection free.

127

Corollary 5. Let C be a set of well originated, simplified clauses such that Cstd ⊆ C. Let C′
the resulting set by application of the rule GRed(Sp) to C. Let DF0 be a derivation of some
fact F0 at step τ0 from C such that T,Sp, nIO ` DF . There exists a derivation D′F0

of F0 at
step τ0 from C′ such that T,Sp, nIO ` D′F0

.

Proof. The proof is done by induction on the number of nodes labeled by the clause H −→ F
on which GRed(Sp) is applied, the inductive step being a direct application of Lemma 35.

Corollary 6. Let C be a set of well originated, simplified clauses such that Cstd ⊆ C. Let DF0

be a derivation of some fact F0 at step τ0 from C ∪ Ce(T) such that T,Sp, nIO ` DF0. There
exists a derivation D′F0

of F0 at step τ0 from condenseSp(C)∪Ce(T) such that T,Sp, nIO ` D′F0
.

Proof. Direct application of Corollaries 4 and 5.

C.4 Main proof

Theorem 2. Let CI be an initial instrumented configuration. Let Sp be a set of predicates.
Let L, Li be two sets of lemmas. Let R be a set of fully IO-κio-compliant restrictions. Let
T ∈ traceκioIO (CI ,−→i)|R.

For all well originated sets of clauses C containing Cstd, for all derivations D of F at step
τ from C∪Ce(T) such that HypL,Li(T, (τ)) and T,Sp, κio ` D, there exists a derivation D′ of
F at step τ from saturate

Sp
L∪R,Li(C) ∪ Ce(T) such that T,Sp, κio ` D′.

Proof. The first part of the proof is almost a direct consequence of Corollaries 2, 3 and 6.
The first step of saturate

Sp
L,Li(C) consists of generating C1 = condenseSp(simplify

Sp
L,Li(C)).

Since C is well originated and Cstd ⊆ C, we can apply Lemma 31 and corollaries 3 and 6 to
obtain that there exists a derivation D1

F of F at step τ from C1∪Ce(T) such that T,Sp, n ` D1
F .

The second step of the saturation generates a new clause R by application of the resolution
rule Res. Hence D1

F is a derivation from C1 ∪ {R} ∪ Ce(T). The third step of the saturation
computes the set C2 = condenseSp(C1 ∪ simplify

Sp
L,Li({R})). Thus by applying Corollaries 2

and 6, we obtain that there exists a derivation D2
F of F at step τ from C2 ∪ Ce(T) such

that T,Sp, n ` D2
F . Since the second and third steps are repeated until a fix point is reached,

denoted Csat, we can deduce that there exists a derivation D′F of F at step τ from Csat∪Ce(T)
such that T,Sp, n ` D′F .

By definition, saturate
Sp
L,Li(C) = {R ∈ Csat | sel(R) = ∅}. Hence, we still have to show

that we can build a selection free derivation D′ of F at step τ from Csat ∪ Ce(T). To do so,
given a derivation D, we denote by |D|sel the number of nodes in D labeled by a clause R such
that sel(R) 6= ∅.

Let us consider the derivation D′ of F at step τ from Csat ∪ Ce(T) that is minimal for
(|D′|sel, |D′|) (using the lexicographic order). We show by contradiction that D′ is selection
free, i.e. |D′|sel = 0.

Assume that |D′|sel 6= 0. Hence D′ = Dc[DR] for some derivation context Dc and some
derivation DR such that DR is labeled by some clause R = (F ∧H ′ −→ C ′) with F ∈ sel(R).
By denoting Csat = C′sat∪{R}, we can assume by minimality on the size of DR that all nodes
of DR except the root are labeled by clauses of C′sat ∪Ce(T) with no selected hypothesis. By
definition of a derivation, we deduce that DR is of the following form:

128

The derivation DR

F ∧H ′ −→ C ′

H −→ C

DH

DH′

C ′σ, τC′

Fσ, τF

Hσ

H ′σ

where σ is a substitution, DH and DH′ are respectively conjunction derivations of Hσ and
H ′σ. Note that since F is selectable, F cannot be an event. Thus (H −→ C) 6∈ Ce(T) and so
H −→ C ∈ Csat. Moreover since Fσ is the label of the incoming edge of the node labeled by
H −→ C, we deduce that Cσ = Fσ. Thus, we can compute σ′ the most general unifier of C and
F and apply the rule Res to obtain the clause R′ = Hσ′∧H ′σ′ −→ C ′σ′, since sel(H −→ C) = ∅
because all nodes of DR except the root are labeled by clauses with no selected hypothesis.
Thus we can build the following derivation D′R of C ′σ at step τ ′C :

The derivation DR

Hσ′ ∧H ′σ′ −→ C ′σ′

DH DH′

C ′σ, τC′

Hσ

H ′σ

Notice that |D′R| < |DR| and so |Dc[D′R]| < |D′|. Moreover, |Dc[D′R]|sel ≤ |D′|sel (the clause
Hσ′ ∧H ′σ′ −→ C ′σ′ may not be selection free) and so (|Dc[D′R]|sel, |Dc[D′R]|) < (|D′|sel, |D′|).

Finally, since sel(H −→ C) = ∅, the clause H −→ C cannot be a clause (Rf) for a projection
of a data constructor function symbol. On the other hand, since F ∈ sel(F ∧H ′ −→ C ′), the
clause F ∧ H ′ −→ C ′ is not a clause (Rf) for a data constructor function symbol. Therefore,
we deduce from T,Sp, n ` D′ that T,Sp, n ` Dc[D′R].

Notice that D′R is strictly selection free. Thus by applying Lemma 32, we deduce that
there exist two derivation contexts Dπ[_],D′c[_] and a derivation D′′R such that:

• Dc = D′c[Dπ[_]]

• Dπ[_] is a context derivation with a unique hole and whose nodes are labeled by a clause
attn(f(x1, . . . , xm)) −→ attn(xi) for some f ∈ Fdata and i ∈ {1, . . . ,m}

• D′′R is a derivation from C′sat ∪Ce(T)∪ simplify
Sp
L,Li({R

′}) such that all nodes except the
root are labeled by clauses from C′sat ∪ Ce(T).

129

• T,Sp, n ` D′c[D′′R]

• |D′′R| ≤ |Dπ[D′R]|

• D′′R is strictly selection free.

Thus, we deduce that |D′c[D′′R]| ≤ |D′c[Dπ[D′R]]| = |Dc[D′R]| < |D′| and |D′c[D′′R]|sel ≤ |D′c|sel +
1 ≤ |Dc|sel + 1 ≤ |D′|sel and so (|D′c[D′′R]|sel, |D′c[D′′R]|) < (|D′|sel, |D′|)

Since Csat was obtained by applying the saturation steps until a fix point is reached, we
deduce that the clause R′′ labeling the root of D′′R satisfies one of the following properties:

• R′′ is in Csat: Such a case is impossible as (|D′c[D′′R]|sel, |D′c[D′′R]|) < (|D′|sel, |D′|) would
contradict the minimality of |D′| w.r.t. (|D′|sel, |D′|).

• there exists a clause Rs in Csat that subsumes R′′: By Lemma 33, there exists a deriva-
tion Ds from Csat ∪ Ce(T) such that T,Sp, n ` D′c[Ds], |Ds| ≤ |D′′R| and Ds is strictly
selection free. Thus we have once again |D′c[Ds]| < |D′| and |D′c[Ds]|sel ≤ |D′|sel and
so (|D′c[Ds]|sel, |D′c[Ds]|) < (|D′|sel, |D′|) which contradicts the minimality of |D′| w.r.t.
(|D′|sel, |D′|).

• sel(R′′) = ∅ and was removed by application of the rule GRed(Sp). But in such a case,
D′′R is selection free. Furthermore, by Lemma 35, there exists a derivation Dr from
Csat ∪Ce(T) such that T,Sp, n ` D′c[Dr] and Dr is selection free. Thus, we deduce that
|D′c[Dr]|sel < |D′|sel which entails (|D′c[Dr]|sel, |D′c[Dr]|) < (|D′|sel, |D′|). This once again
contradicts the minimality of |D′| w.r.t. (|D′|sel, |D′|).

Since all possible cases end with a contradiction, we can conclude that |D′|select = 0 and so
D′ is a derivation of F at step τ from saturate

Sp
L,Li(C) ∪ Ce(T).

D Proof of Theorem 4

The proof of Theorem 4 will follow closely the proof of Theorem 2 since both focus on the
saturation procedure, the former being on ordered clauses. Since some simplification rules
cannot be applied when computing saturateS

Sp
L,Li(C,Csat) (e.g. (Taut), (DataCl)), the lemmas

will be simpler to state and to prove even though they will contain additional arguments to
handle the ordering functions.

As for the proof of Theorem 2, we consider a preamble to all lemmas in this section:

Let CI be an initial instrumented configuration. Let Sp be a set of predicates containing
the event predicate. Let L, Li be two sets of ProVerif IO-nIO-compliant lemmas. Let
T ∈ tracenIOIO (CI ,−→i) and M be a multiset such that HypL,Li(T,M) holds. Let Csat
be a set of well originated, simplified, selection free clauses containing the selection free
clauses of Cstd.

Once again, this preamble corresponds to the hypotheses of Theorem 4.

130

D.1 Soundness of simplifyS
Sp
L,Li(C)

Lemma 36. Let R be an ordered clause satisfying Sp. Let D be an ordered derivation ofcm
i=1 Fi at steps τ1, . . . , τm from {R} and Csat ∪ Ce(T) such that {{τ1, . . . , τm}} ≤m M and

T,Sp, nIO ` D. All clauses in simplifyS
Sp
L,Li({R}) satisfy Sp and there exists an ordered deriva-

tion D′ of
cm
i=1 Fi at steps τ1, . . . , τm from simplifyS

Sp
L,Li({R}) and Csat ∪ Ce(T) such that

T,Sp, nIO ` D′ and |D′| ≤ |D|.

Proof. By definition, simplifyS
Sp
L,Li({R}) is the repeated application on {R} of the rules Redo,

Atto, Rφ,o, DataHypo, Nato, Lemo(L,Sp) and Indo(Li,Sp). Therefore, the computation of
simplifyS

Sp
L,Li({R}) can be seen as a sequence C0, . . . ,CN where CN = simplifyS

Sp
L,Li({R}),

C0 = {R} and for all j ∈ {1, . . . , N}, Cj is obtained from Cj−1 by application of one the rules
Redo, Atto, Rφ,o, DataHypo, Nato, Lemo(L,Sp) and Indo(Li,Sp).

The proof of the lemma is thus done by induction on N by showing that for all j ∈
{0, . . . , N}, we can build an ordered derivation Dj of

cm
i=1 Fi at steps τ1, . . . , τm from Cj and

Csat ∪ Ce(T).

Base case j = 0: Since C0 = {R}, the result directly holds by taking D0 = D.

Inductive step j > 0: In such a case, we apply our inductive hypothesis on j − 1 which
gives us the existence of the ordered derivation Dj−1 of

cm
i=1 Fi at steps τ1, . . . , τm from Cj

and Csat ∪ Ce(T). Let us look at the transformation applied on Cj−1 to obtain Cj . Notice
that all the transformation rules only affect one clause at a time. Thus, there exists R′ such
that Cj−1 = C′j−1 ∪ {R′} and Cj = C′j−1 ∪ C′ where C′ is the result of the application of a
transformation rule on R′. Hence if the child of the root of the derivation Dj−1 is labeled by
a clause of C′j−1 then the result trivially holds by taking Dj = Dj−1. Otherwise, the child of
the root of the derivation Dj−1 is labeled by R′. We do a case analysis on the transformation
rule applied on R′:

• Rule Redo: In such a case, R′ is of the form H ∧ φ ∧
∧n
k=1G

δk
k ∧ G

′δ′k
k −→ C such

that G′kσ = Gk and either G′k = Gk or δ′k wo δk for all k ∈ {1, . . . , n}, φ |= φσ and
dom(σ) ∩ fv(H,C,G1, . . . , Gn) = ∅. Moreover, by Definition 26, we know that there
exist a substitution σ, some derivations DH ,DG1 , . . . ,DGn , . . . ,DG′

1
, . . . ,DG′

n
and some

steps τG1 , . . . , τGn , τG′
1
, . . . , τG′

n
such that Cσ′ =

cm
i=1 Fi and the derivation Dj−1 has

the following form:

The derivation Dj−1

H ∧ φ ∧Gδ11 ∧ . . . ∧Gδnn ∧G
′δ′1
1 ∧ . . . ∧G

′δ′n
n −→ C

DH DG1 DGn DG′
1

DG′
n

cm
i=1 Fi, τ1, . . . , τm

Hσ′
G1σ

′, τG1

Gnσ
′, τGn

G′1σ
′, τG′

1 G′nσ
′, τG′

n

131

Moreover, we also know that for all i ∈ {1, . . . ,m}, for all k ∈ {1, . . . , n}, if δk(i) is
defined then τGk δk(i) τi. Similarly, if δ′k(i) is defined then τG′

k
δ′k(i) τi.

For all k ∈ {1, . . . , n}, we define a new derivation D′k and a step τ ′k defined as follows: if
G′k = Gk and τG′

k
< τGk then D′k = DG′

k
and τ ′k = τG′

k
else D′k = DGk and τ ′k = τGk .

First notice that D′k is a derivation of Gkσ′ at step τ ′k. Indeed, when G′k = Gk and
τG′

k
< τGk , we trivially have G′kσ

′ = Gkσ
′ and D′k is a derivation of G′kσ

′. Otherwise
D′k = DGk and τ ′k = τGk hence the result directly holds.

Second, if pred(Gk) 6∈ Sp then pred(G′k) 6∈ Sp since G′kσ = Gk. Thus, with R′ satisfying
Sp, we deduce that if pred(Gk) 6∈ Sp then for all i ∈ {1, . . . ,m}, δk(i) 6= < and δ′k(i) 6= <.
By definition of (δk∪δ′k)(i), we therefore deduce that if pred(Gk) 6∈ Sp then (δk∪δ′k)(i) 6=
<. Hence, the rule H ∧ φ ∧Gδ1∪δ

′
1

1 ∧ . . . ∧Gδn∪δ
′
n

n −→ C satisfies Sp.
Let us show that for all i ∈ {1, . . . ,m}, if (δk ∪ δ′k)(i) is defined then τ ′k (δk ∪ δ′k)(i) τi.
By definition of δk∪δ′k, if (δk∪δ′k)(i) is defined then δk(i) or δ′k(i) are defined. Moreover,
(δk ∪ δ′k)(i) = < implies < ∈ {δk(i), δ′k(i)}. We do a case analysis:

1. if δk(i) is defined and δk(i) = <. In such case, we know that τGk < τi. If τ ′k = τGk
then the result directly holds, else τ ′k = τG′

k
and τG′

k
< τGk by definition, implying

τ ′k < τi. Hence the result holds.

2. if δ′k(i) is defined and δ′k(i) = <. In such a case, we know that τG′
k
< τi. If

τ ′k = τG′
k
then the result directly holds. Otherwise, either G′k = Gk and τGk ≤ τG′

k
;

or δ′k wo δk. In the former case, τG′
k
< τi and τGk ≤ τG′

k
implies τGk < τi and so

τ ′k < τi. In the latter case, by definition of the subsumption, δ′k(i) being defined
implies δk(i) being defined. Moreover, since δ′k(i) = < then δk(i) = <. Hence we
deduce that τGk < τi and so τ ′k < τi.

3. if δk(i) = ≤ and δ′k(i) 6= <: In such case, we know that τGk ≤ τi. The rest of the
proof is the same as in Case 1.

4. if δ′k(i) = ≤ and δk(i) 6= <: In such a case, we know that τG′
k
≤ τi. . If τ ′k = τG′

k

then the result directly holds. Otherwise, either G′k = Gk and τGk ≤ τG′
k
; or

δ′k wo δk. In the former case, τG′
k
≤ τi and τGk ≤ τG′

k
implies τGk ≤ τi and so

τ ′k ≤ τi. In the latter case, by definition of the subsumption, δ′k(i) being defined
implies δk(i) being defined. Moreover, since δ′k(i) = ≤ then δk(i) = ≤ or δk(i) = <.
In both cases, we deduce that τGk ≤ τi and so τ ′k ≤ τi.

We can therefore build the derivation Dj as follows:

132

The derivation Dj

H ∧ φ ∧Gδ1∪δ
′
1

1 ∧ . . . ∧Gδn∪δ
′
n

n −→ C

D′1DH D′n

cm
i=1 Fi, τ1, . . . , τm

Hσ′

G1σ
′, τG1

Gnσ
′, τGn

• Rule Atto: In such a case, R′ is of the form atti(x)δ ∧ H ∧ φ −→ C where x does not
appear in H and C. Since we only remove the atti(x)δ from the clause without changing
the rest of the clause, the result directly holds.

• Rule DataHypo: In such a case, R′ is of the form attn(g(M1, . . . ,M`))
δ ∧H −→ C where

g ∈ Fdata. Moreover, we transform the clause R′ into the clause R′′ = attn(M1)δ
′ ∧

. . . ∧ attn(M`)
δ′ ∧ H −→ C where δ′ = δ< if attn ∈ Sp else δ′ = δ. By Definition 26,

we know that the child η of the root is labeled by R′ and possesses a child η′ such that

η
attn(g(M1,...,M`)σ),τ ′−−−−−−−−−−−−−−→ η′ for some σ, τ ′. Moreover, Definition 26 also indicates that the

sub-derivation D′ rooted in η′ satisfies T,Sp, nIO ` D′. Hence, since g ∈ Fdata and any
projection clause of a data constructor is not selection free, we deduce that there exist
DM1 , . . . ,DM`

and τM1 , . . . , τM`
such that the derivation Dj−1 is of the following form:

The derivation Dj−1

attn(g(M1, . . . ,M`))
δ ∧H −→ C

attn(x1) ∧ . . . ∧ attn(x`) −→ attn(g(x1, . . . , x`))

. . .DM1 DMm

DH

cm
i=1 Fi, τ1, . . . , τm

attn(g(M1, . . . ,M`)σ), τ ′

attn(M1σ), τM1 attn(M`σ), τM`

Hσ

Note that T,Sp, nIO ` D′ implies that T,Sp, nIO ` DMk
for all k ∈ {1, . . . , `}. Fur-

thermore, Definition 26 also indicates that for all i ∈ {1, . . . ,m}, if δ(i) is defined then
τ ′ δ(i) τi. Furthermore, as T,Sp, nIO ` D′, we also deduce that if attn ∈ Sp (resp.
attn 6∈ Sp) then τMj < τ ′ (resp. τMj ≤ τ ′) for all j ∈ {1, . . . , `}. Hence, for all
i ∈ {1, . . . ,m}, if δ(i) is defined then

133

– either attn ∈ Sp and τMj < τ ′ δ(i) τi which implies that τMj δ
<(i) τi and so

τMj δ
′(i) τi;

– or else attn 6∈ Sp and τMj ≤ τ ′ δ(i) τi which implies that τMj δ(i) τi and so
τMj δ

′(i) τi

In both cases, we can thus build Dj by replacing the ordered clause R′ with R′′ and by
directly plugging DM1 , . . . ,DMm as child of the child of the root as follows:

The derivation Dj

attn(M1)δ
′ ∧ . . . ∧ attn(M`)

δ′ ∧H −→ C

. . .DM1 DMm DH

cm
i=1 Fi, τ1, . . . , τm

attn(M1σ), τM1
attn(M`σ), τM` Hσ

Notice that if attn 6∈ Sp then δ′ = δ. Hence, since R′ satisfies Sp, we deduce that the
clause R′′ also satisfies Sp.

• Rule Nato and Rφ,o: These sets of rules only modifies the formula of the ordered clause
and preserve their solution. Hence, the result directly holds.

• Rule Lemo(L,Sp) and Indo(Li,Sp): We prove these two cases at the same time since
main difference between these rules are on the application conditions of the rules.
For both rules, there exist a substitution σ and ψ = (

∧`
k=1Gk ⇒

∨n
k=1 φk) ∈ L such

that R′ = (dG1σesureδ1
∧ . . . dG`σesureδ`

∧H −→ C) and for all k ∈ {1, . . . , `}, pred(Gk) ∈ Sp.
Moreover, in the case of rule Indo(Li,Sp), we know that δ1, . . . , δ` are n-strict. Finally,
the resulting set of clauses C′ is {dG1σesureδ1

∧ . . . dG`σesureδ`
∧ H ∧ dφkσesureδ −→ C}nk=1

where δ wo δk for all k ∈ {1, . . . , `}. Notice that the generated clause only adds events in
the hypotheses ofR′. Hence, since Sp contains the event predicates andR′ satisfies Sp, we
deduce that for all k ∈ {1, . . . , n}, the clause dG1σesureδ1

∧. . . dG`σesureδ`
∧H∧dφkσesureδ −→

C satisfies Sp.
We obtain that Dj−1 is the derivation presented below:

The derivation Dj−1

dG1σesureδ1
∧ . . . ∧ dG`σesureδ`

∧H −→ C

DG`. . .DG1

DH

Cσ′, τ1, . . . , τm

dG1σesureσ′, τG1
dG`σesureσ′, τG` Hσ′

134

Since for all k ∈ {1, . . . , `}, T,Sp, nIO ` DGk and pred(Gk) ∈ Sp, we deduce that
T, τGk `

nIO
IO dGkσesureσ′. Recall that the satisfaction conditions for an event are the

same for its sure-event counterpart. Therefore, we deduce that for all k ∈ {1, . . . , `},
T, τGk `

nIO
IO Gkσσ

′.

Note that when the rule applied is Indo(Li,Sp), we know that δ1, . . . , δ` are n-strict.
Moreover since T,Sp, nIO ` Dj−1, we deduce that for all k ∈ {1, . . . , `}, for i ∈
{1, . . . ,m}, if δk(i) is defined then τGkδk(i)τi. Therefore by Lemma 14, we deduce that
{{τG1 , . . . , τG`}} <m {{τ1, . . . , τm}}. Hence by the hypotheses of our lemma, we obtain
that {{τG1 , . . . , τG`}} <mM.

This allows us to apply Lemma 29, thus there exist i ∈ {1, . . . , n}, a substitution σ′′,
steps τ ′1, . . . , τ ′r, events E1, . . . , Er and a formula φ′ such that

– φi = E1 ∧ . . . ∧ Er ∧ φ′

– for all i′ ∈ {1, . . . , `}, Gi′σσ′ = Gi′σ
′′

– for all k ∈ {1, . . . , r}, τ ′k ≤ max(τG1 , . . . , τG`) and T, τ ′k `
nIO
IO Ekσ

′′

– `nIOIO φ′σ′′

Let us prove that for all i′ ∈ {1, . . . ,m}, if δ(i′) is defined then for all k ∈ {1, . . . , r},
τ ′k δ(i′) τi′ . Let i′ ∈ {1, . . . ,m} and let us assume that δ(i′) is defined. By defi-
nition of the transformation rule Lemo(L,Sp) and Indo(L,Sp), we know that for all
k′ ∈ {1, . . . , `}, δ wo δk′ . Hence by Definition 27, δk′(i′) is also defined and τ δk′(i′) τ ′

implies τ δ(i′) τ ′ for all steps τ, τ ′. But T,Sp, nIO ` Dj−1 and δk′(i
′) being defined

implies that τGk′ δk′(i
′)τi′ and so τGk′ δ(i

′) τi′ . Since τ ′k′ ≤ max(τG1 , . . . , τG`), we can
conclude that τ ′k′ δ(i) τi′ .

We can now build the derivationD′R by replacing the clauseR′ with the clause dG1σesure∧
. . . ∧ dG`σesure ∧H ∧ dE1σesure ∧ . . . ∧ dErσesure ∧ φσ −→ C as follows:

The derivation Dj

dG1σesureδ1
∧ . . . ∧ dG`σesureδ`

∧H ∧ dE1σesureδ ∧ . . . ∧ dErσesureδ ∧ φσ −→ C

D1 . . . D` DH −→ dE1σ
′′esure . . . −→ dErσ′′esure

Cσ′, τ1, . . . , τm

dG1σesureσ′, τG1 dG`σesureσ′, τG` dE1σ
′′esure, τ ′1 dErσ′′esure, τ ′rHσ′

Finally, all Ei are events hence do not influence the size of the derivation meaning that
|Dj | = |Dj−1|. Since all clauses −→ dEiσ′′esure for i = 1, . . . , r are in Ce(T), we can
conclude.

Corollary 7. Let C be a set of ordered clauses satisfying Sp. Let D be an ordered derivation
of

cm
i=1 Fi at steps τ1, . . . , τm from C and Csat ∪ Ce(T) such that {{τ1, . . . , τm}} ≤m M and

T,Sp, nIO ` D. All clauses in simplifyS
Sp
L,Li(C) satisfy Sp and there exists an ordered derivation

135

D′ of
cm
i=1 Fi at steps τ1, . . . , τm from simplifyS

Sp
L,Li(C) and Csat∪Ce(T) such that T,Sp, nIO `

D′ and |D′| ≤ |D|.

Proof. Since simplifyS
Sp
L,Li({R1, . . . , Rn}) = simplifyS

Sp
L,Li({R1})∪ . . .∪simplifyS

Sp
L,Li({Rn}), the

result directly follows from Lemma 36.

D.2 Soundness of condenseSSp(C)

Lemma 37. Let D be an ordered derivation of
cm
i=1 Fi at steps τ1, . . . , τm from {R} and

Csat ∪ Ce(T) such that T,Sp, nIO ` D.
If there exists an ordered clause R′ such that R′ wo R then there exists an ordered derivation

D′ of
cm
i=1 Fi at steps τ1, . . . , τm from simplify

Sp
L,Li({R

′}) and Csat∪Ce(T) such that T,Sp, nIO `
D′ and |D′| ≤ |D|.

Proof. Assume that R′ wo R. By definition, we can denote R = H2 ∧ H ′2 ∧ φ2 −→ C2 and
R′ = H1 ∧ φ1 −→ C1 such that H1 = {{Gδ11 , . . . , G

δn
n }}, H2 = {{G′δ

′
1

1 , . . . , G
′δ′n
n }} and there exists

a substitution σ such that:

• C1σ = C2;

• for all i ∈ {1, . . . , n}, Giσ = G′i and δi wo δ′i;

• φ2 |= φ1σ.

Moreover, since D is an ordered derivation from {R} and Csat ∪ Ce(T), there exist a
conjunction of derivations DH′

2
and n derivations DG′

1
, . . . ,DG′

n
and a substitution σ′ such

that C2σ
′ =

cm
i=1 Fi, DH′

2
is the derivation of H ′2σ′ and for i = 1 . . . n, DG′

i
is the derivation

of G′iσ
′ at some step τG′

i
.

The derivation D

H ′2 ∧ φ2 ∧G
′δ′1
1 ∧ . . . ∧G

′δ′n
n −→ C2

DG′
1

DH′
2

DG′
n

cm
i=1 Fi, τ1, . . . , τm

H2σ
′

G′1σ
′, τG′

1

G′nσ
′, τG′

n

Note that C2σ
′ = C1σσ

′ and for all i ∈ {1, . . . , n}, Giσσ′ = G′iσ
′. Moreover, `nIOIO φ1σσ

′

and φ2 |= φ1σ implies `i φ1σσ
′. Hence, we build the derivation D′ by replacing R with R′ as

root and by only keeping the derivations DG′
1
, . . . ,DG′

n
as follows:

136

The derivation D′

φ1 ∧Gδ11 ∧ . . . ∧Gδnn −→ C1

DG′
1

DG′
n

cm
i=1 Fi, τ1, . . . , τm

G′1σ
′, τG′

1 G′nσ
′, τG′

n

To prove that T,Sp, nIO ` D′, we still need to ensure that Item 3c of Definition 26 is verified,
i.e. that the derivation satisfies the ordering functions δ1, . . . , δn. The other properties of
Definition 26 being directly obtained from T,Sp, nIO ` D.

Let k ∈ {1, . . . , n} and i ∈ {1, . . . ,m}. Assume that δk(i) is defined. We know that
δk wo δ′k. Hence δk(i) being defined implies that δ′k(i) is defined. Hence, τG′

k
δ′k(i) τi.

However, from δk wo δ′k, we also know that δ′k(i) = ≤ implies δk(i) 6= <. Thus, δ′k(i) = ≤
implies δk(i) = ≤; and δ′k(i) = < implies δk(i) ∈ {≤, <}. In both cases, we deduce that
τG′

k
δ′k(i) τi implies τG′

k
δk(i) τi, which allows us to conclude.

Corollary 8. Let C = C′ ∪ {R;R′} be a set of ordered clauses such that R′ wo R. Let D
be an ordered derivation of

cm
i=1 Fi at steps τ1, . . . , τm from C and Csat ∪ Ce(T) such that

T,Sp, nIO ` D. There exists an ordered derivation D′ of
cm
i=1 Fi at steps τ1, . . . , τm from

C′ ∪ {R′} and Csat ∪ Ce(T) such that T,Sp, nIO ` D′.

Proof. If the child of the root of derivation D is labeled by R, we can apply Lemma 37 to
obtain the result. Otherwise, the clause labeling the child of the root of D is in C′ ∪ {R′} and
so the result directly holds.

Lemma 38. Let C = C′ ∪ {R = (H −→ C)} be a set of ordered clauses satisfying Sp such that
simplifyS

Sp
L,Li(C) = C. Let D be an ordered derivation of

cm
i=1 Fi at steps τ1, . . . , τm from C

and Csat ∪ Ce(T) such that T,Sp, nIO ` D.
If there exists Dp an ordered partial derivation of C from C′ and Csat such that Fus(Dp) −→

C w R and pred(Fs(Dp)) ∩ Sp = ∅ then there exists a derivation D′ of
cm
i=1 Fi at steps

τ1, . . . , τm from C′ and Csat ∪ Ce(T) such that T,Sp, nIO ` D′ and either D′ is selection free
or D′ = D.

Proof. Let’s assume that the child of the root of D is the rule R, otherwise the result trivially
holds by taking D′ = D. By definition of Dp being an ordered partial derivation of C from
C′ and Csat, we deduce that the child of the root of Dp is labeled by an ordered clause
R′ = U δ11 ∧ . . . ∧ U δnn ∧ φu −→ C ′ and there exist a substitution σ and n partial derivations
D1
p, . . . ,Dnp of U1σ, . . . , Unσ from Csat respectively such that C ′σ = C.
Moreover, we have Fus(Dp) = {{φuσ}} ∪

⋃n
i=1 Fi where for all i ∈ {1, . . . , n},

• if Dip only contains a root and an unlabeled leaf, then Fi = {{U δii σ}};

• otherwise Fus(Dip) is some multiset {{G1,i, . . . , Gni,i, φi}} and Fi = {{G
δG1,i

1,i , . . . , G
δGni,i
ni,i

, φi}}
where for all j ∈ {1, . . . , ni}, if pred(Gj,i) ∈ Sp then δGj,i = δ<i else δGj,i = δi.

137

For uniformity, in the first case, we define ni = 1, G1,i = Uiσ, δG1,i = δi, and φi = >.
By hypothesis, Fus(Dp) −→ C w R. Hence, there exists a substitution σ′ such that :

• H is of the form H ′ ∧ φ′ ∧
∧n
i=1G

δ1,i
1,i σ

′ ∧ . . . ∧Gδni,ini,i
σ′

• Cσ′ = C

• φ′ |= φuσσ
′ ∧ φ1σ

′ ∧ . . . ∧ φnσ′

• δGj,i wo δj,i

Finally, sinceD is an ordered derivation of
cm
i=1 Fi at steps τ1, . . . , τm such that T,Sp, nIO `

D, we obtain that there exist a substitution σ′′, some steps τj,i and derivations Dj,i for i =
1, . . . , n and j = 1, . . . , ni such that for all i ∈ {1, . . . , n}, for all j ∈ {1, . . . , ni},

• Dj,i is a derivation of Gj,iσ′σ′′ at step τj,i from Csat ∪ Ce(T)

• T,Sp, nIO `nIOIO Di,j

• for all k ∈ {1, . . . ,m}, if δj,i(k) is defined then τj,i δj,i(k) τk

• `nIOIO φ′σ′′

• Cσ′′ =
cm
i=1 Fi

Since φ′ |= φuσ
′ ∧ φ1σ

′ ∧ . . . ∧ φnσ′ and `nIOIO φ′σ′′, we deduce that `nIOIO φuσσ
′σ′′ and for

all i ∈ {1, . . . , n}, `nIOIO φiσ
′σ′′.

Let i ∈ {1, . . . , n}. Let us prove that there exists a derivation Di of Uiσσ′σ′′ at some step
τUi from Csat ∪ Ce(T) such that T,Sp, nIO `nIOIO Di and for all k ∈ {1, . . . ,m}, if δi(k) is
defined then τUi δi(k) τk. With this property and since we already proved that `nIOIO φuσσ

′σ′′

and C ′σσ′σ′′ = Cσ′σ′′ = Cσ′′ =
cm
i=1 Fi, we would obtain an ordered derivation D′ from C′

and Csat ∪ Ce(T) such that T,Sp, nIO ` D′. In particular, D′ would have the following form:

The derivation D′

U δ11 ∧ . . . ∧ U δnn ∧ φu −→ C ′

. . .D1 Dn

cm
i=1 Fi, τ1, . . . , τm

U1σσ
′σ′′, τU1 Unσσ

′σ′′, τUn

By hypothesis of the rule, we know that Fs(Dp) ∩ Sp = ∅. Let us do a case analysis on
whether pred(Ui) ∈ Sp or not.

Case pred(Ui) ∈ Sp: In such a case, we deduce that Dip is in fact a partial derivation composed
of only the unlabeled root and the unlabeled leaf linked by an edge labeled Uiσ. Hence ni = 1,
G1,i = Uiσ and δG1,i = δi. In such a case, we take τUi = τ1,i and Di = D1,i. Indeed, we
already know that D1,i is a derivation of G1,iσ

′σ′′ at step τ1,i from Csat ∪ Ce(T) such that
T,Sp, nIO `nIOIO D1,i. Furthermore, for all k ∈ {1, . . . ,m}, if δi(k) is defined then we know

138

from δi = δG1,i wo δ1,i that δ1,i(k) is defined. Hence, from T,Sp, nIO `nIOIO D1,i, we deduce
that τ1,i δ1,i(k) τk which implies τ1,i δi(k) τk thanks to δG1,i wo δ1,i.

Case pred(Ui) 6∈ Sp: In such a case, we define τUi = maxnij=1(if pred(Gj,i) ∈ Sp then τj,i + 1

else τj,i). We wish to apply Lemma 34. We already know that Dip is a partial derivation of
Uiσ where Fus(Dip) = {{Gj,i, . . . , Gni,i, φi}}. Furthermore, we also proved that `nIOIO φiσ

′σ′′

and for all j ∈ {1, . . . , ni}, Dj,i is a derivation of Gj,iσ′σ′′ at step τj,i from Csat ∪ Ce(T) such
that T,Sp, nIO ` Dj,i, hence satisfying the first and third item of Lemma 34’s hypotheses.
Since pred(Ui) 6∈ Sp, the fourth item of Lemma 34’s hypotheses is trivially satisfied. Finally,
the second item of Lemma 34’s hypotheses is satisfied by construction of τUi . Therefore, we
can apply Lemma 34 to obtain that there exists a derivation Di of Uiσσ′σ′′ at step τUi from
Csat ∪ Ce(T) such that T,Sp, nIO ` Di.

It remains to prove that for all k ∈ {1, . . . ,m}, if δi(k) is defined then τUi δi(k) τk. Let
us consider j ∈ {1, . . . , ni} such that τUi = τj,i + 1 when pred(Gj,i) ∈ Sp and τUi = τj,i when
pred(Gj,i) 6∈ Sp.

• Case pred(Gj,i) ∈ Sp and τUi = τj,i + 1: In such a case, δGj,i = δ<i . Hence, δi(k) being
defined implies δGj,i(k) = <. Moreover, since δGj,i wo δj,i, we deduce that δj,i(k) = <.
But we already proved that in such case, τj,i δj,i(k) τk, i.e. τj,i < τk, and so τUi ≤ τk.
Note that that since pred(Ui) 6∈ Sp and R′ is an ordered clause satisfying Sp, we deduce
that δi(k) = ≤. Thus we conclude that τUi δi(k) τk.

• Case pred(Gj,i) 6∈ Sp and τUi = τj,i: In such a case, δGj,i = δi. Moreover, since δGj,i wo
δj,i, we deduce that δi wo δj,i and so δi(k) being defined implies that δj,i(k) is defined.
Since τj,i δj,i(k) τk and δi wo δj,i, we obtain that τj,i δi(k) τk and so we can conclude
that τUi δi(k) τk.

Corollary 9. Let C be a set of ordered clauses satisfying Sp such that simplifyS
Sp
L,Li(C) = C.

Let D be an ordered derivation of
cm
i=1 Fi at steps τ1, . . . , τm from C and Csat ∪ Ce(T) such

that T,Sp, nIO ` D. All clauses in condenseSSp(C) satisfy Sp and there exists a derivation D′
of

cm
i=1 Fi at steps τ1, . . . , τm from condenseSSp(C) and Csat∪Ce(T) such that T,Sp, nIO ` D′.

Proof. condenseSSp(C) ⊆ C hence we directly have that all clauses in condenseSSp(C) satisfy
Sp. The rest of the proof is a direct application of Corollary 8 and lemma 38.

D.3 Main proof

Theorem 4. Let CI be an initial instrumented configuration. Let Sp be a set of predicates
containing the event predicates m-event and s-event. Let L, Li be two sets of lemmas. let R
be a set of fully IO-κio-compliant lemmas. Let T ∈ traceκioIO (CI ,−→i)|R. Let C be a set of well
originated, simplified, selection free clauses containing the selection free clauses of Cstd.

For all ordered clauses R satisfying Sp, for all ordered derivations D of
cm
i=1 Fi at steps τ̃

from {R} and C ∪ Ce(T) such that HypL,Li(T, τ̃) and T,Sp, κio ` D, there exists an ordered
derivation D′ of

cm
i=1 Fi at steps τ̃ from saturateS

Sp
L∪R,Li({R},C) and C ∪ Ce(T) such that

T,Sp, κio ` D′.

Proof. The first part of the proof is almost a direct consequence of Corollaries 7 and 9.
The first step of saturateS

Sp
L,Li({R},C) consists of generating C1 = condenseSSp(simplifyS

Sp
L,Li({R})).

Since {{τ1, . . . , τm}} ≤ind M and T,Sp, nIO ` D, we can apply Corollaries 7 and 9 to obtain

139

that there exists a derivation D1 of
cm
i=1 Fi at steps τ1, . . . , τm from C1 and C ∪ Ce(T) such

that T,Sp, n ` D1. The second step of the saturation generates a new ordered clause R by
application of the resolution rule Reso(Sp). Note that since ordered clauses in C1 satisfy Sp,
the clause R also satisfies Sp. Hence D1 is a derivation from C1 ∪ {R} and C ∪ Ce(T). The
third step of the saturation computes the set C2 = condenseSSp(C1 ∪ simplifyS

Sp
L,Li({R})).

Thus by applying Corollaries 7 and 9, we obtain that there exists a derivation D2 of
cm
i=1 Fi

at steps τ1, . . . , τm from C2 and C∪Ce(T) such that T,Sp, n ` D2. Since the second and third
steps are repeated until a fix point is reached, denoted CN , we can deduce that there exists a
derivation DN of

cm
i=1 Fi at steps τ1, . . . , τm from CN and C∪Ce(T) such that T,Sp, n ` DN .

By definition, saturateS
Sp
L,Li({R},C) = {R ∈ CN | sel(R) = ∅}. Hence, we still have to

show that we can build a selection free derivation D′ of
cm
i=1 Fi at steps τ1, . . . , τm from CN

and C ∪ Ce(T) such that T,Sp, n ` D′.
By contradiction, let us assume that there is no possible selection free derivation D′ ofcm

i=1 Fi at steps τ1, . . . , τm from CN and C ∪ Ce(T) such that T,Sp, nIO ` D′. Hence let
us consider the derivation D′ of

cm
i=1 Fi at steps τ1, . . . , τm from CN and C ∪ Ce(T) that is

minimal for |D′|.
By hypothesis of the theorem, all clauses of C are selection free, so the ordered clause

labeling the child of the root of D′ is not selection free. Let us denote R′ such ordered clause
and so CN = C′N ∪ {R′}. Since R′ is not selection free, we deduce that R′ = F δ ∧H ′ −→ C ′

for some F, δ,H ′, C ′ such that F ∈ sel(R′).
By definition of a derivation, we deduce that D′ is of the following form:

The derivation D′

F δ ∧H ′ −→ C ′

G1 ∧ . . . ∧Gn −→ C

. . .DG1 DGn

DH′

cm
i=1 Fi, τ1, . . . , τm

Fσ, τF

G1σ, τG1 Gnσ, τGn

H ′σ

where σ is a substitution, DH′ is a conjunction derivation of H ′σ and for all i ∈ {1, . . . , n},
DGi is a derivation of Giσ at step τGi . Note that since F is selectable, F cannot be an event.
Thus (G1 ∧ . . . ∧ Gn −→ C) 6∈ Ce(T) and so (G1 ∧ . . . ∧ Gn −→ C) ∈ C and so the clause
G1 ∧ . . . ∧ Gn −→ C is selection free. Moreover since Fσ is the label of the incoming edge of
the node labeled by G1 ∧ . . . ∧ Gn −→ C, we deduce that Cσ = Fσ. Thus, we can compute
σ′ the most general unifier of C and F and apply the rule Reso(Sp) to obtain the clause
R′′ = Gδ11 σ

′ ∧ . . . ∧ Gδnn ∧ H ′σ′ −→ C ′σ′ where for all i ∈ {1, . . . , n}, if pred(Gi) ∈ Sp then
δi = δ< else δi = δ.

Note that since T,Sp, nIO ` D′, we deduce that for all i ∈ {1, . . . , n}, if pred(Gi) ∈ Sp then
τGi < τF else τGi ≤ τF . Moreover, for all k ∈ {1, . . . ,m}, if δ(k) is defined then τF δ(k) τk.

140

Therefore, let i ∈ {1, . . . , n}, let k ∈ {1, . . . ,m} and assume that δi(k) is defined. We
show that τGi δi(k) τk. If pred(Gi) ∈ Sp then by definition δi = δ<. Hence, we deduce that
δi(k) = <. But δi(k) being defined implies δ(k) is defined and so τF δ(k) τk. With τGi < τF ,
we deduce that τGi < τk which allows us to conclude. Otherwise pred(Gi) 6∈ Sp and so by
definition δi = δ and so τF δi(k) τk. Since τGi ≤ τF , we conclude that τGi δi(k) τk.

Thus we can build the following derivation D′1 of
cm
i=1 Fi at steps τ1, . . . , τm:

The derivation D′1

Gδ11 σ
′ ∧ . . . ∧Gδnn σ′ ∧H ′σ′ −→ C ′σ′

. . .DG1 DGn DH′

cm
i=1 Fi, τ1, . . . , τm

G1σ, τG1 Gnσ, τGn H ′σ

Notice that |D′1| < |D′|. By applying Lemma 36, we obtain that there exists another ordered
derivation D′2 of

cm
i=1 Fi at steps τ1, . . . , τm from simplifyS

Sp
L,Li({R

′′}) and C∪Ce(T) such that
T,Sp, nIO ` D′2 and |D′2| ≤ |D′1| < |D′|.

However, CN was obtained by applying the saturation steps until a fix point is reached.
Hence by our minimality argument, the ordered clause from simplifyS

Sp
L,Li({R

′′}) labeling the
child of the root of D′2 should not occur in CN and so must have been removed by either
an application of the subsumption rule or the rule (GRedo(Sp)). But applying Lemmas 37
and 38, we either obtain a selection free derivation of

cm
i=1 Fi at steps τ1, . . . , τm or we obtain

a derivation D′3 of
cm
i=1 Fi at steps τ1, . . . , τm such that |D′3| ≤ |D′2| which implies |D′3| < |D′|.

In both cases, it contradicts our minimality hypothesis which allows us to conclude.

E Proof of Theorem 6

In this section, we consider the following preamble Pverif :

Let CI be an initial instrumented configuration. Let Q be a set of IO-nIO-compliant
queries. Let L, Li be two sets of ProVerif IO-nIO-compliant lemmas. Let Sp be a
set of predicates containing the event predicates m-event and s-event; all predicates in
the conclusion of queries in Q; all predicates in L and Li and such that for all i ∈ N, if
atti ∈ Sp (resp. tablei) then for all 0 ≤ j ≤ i, attj ∈ Sp (resp. tablej ∈ Sp).

E.1 Preliminary lemmas

Lemma 39. Let CI be an initial instrumented configuration, let nIO be an integer and T ∈
tracenIOIO (CI ,−→i). For all tuples of integers τ̃ , τ̃ ′, if τ̃ ′ ≤m τ̃ and HypL,Li(T, τ̃) then HypL,Li(T, τ̃ ′).

Proof. The proof almost follows immediately from Definition 22. The first item of Definition 22
for HypL,Li(T, τ̃ ′) directly holds from HypL,Li(T, τ̃). For the second item, since τ̃ ′ ≤m τ̃ , we
have that (T, τ̃ ′) ≤ind (T, τ̃). Hence, for all T ′ ∈ tracenIOIO (CI ,−→i), for all tuples of steps

141

τ̃ ′′, if (T ′, τ ′′) <ind (T, τ̃ ′) then (T ′, τ ′′) <ind (T, τ̃) which implies IH%(T ′, τ̃ ′′) thanks to
HypL,Li(T, τ̃).

Lemma 40. Consider the preamble Pverif . Let T ∈ tracenIOIO (CI ,−→i). Let (L′,L′i) such that
either L′ = L and L′i = Li or L′ = L ∪ Li and L′ = ∅.

For all % = (
∧n
i=1 Fi ⇒ ψ) ∈ Q, for all substitutions σ, for all tuples of steps τ̃ =

(τ1, . . . , τn), if HypL′,L′i(T, τ̃) and for all i ∈ {1, . . . , n}, T, τi `nIOIO Fiσ then there exists a
derivation D of

cn
i=1dFiσemay at steps τ̃ from {R%} and Csat ∪ Ce(T) such that:

• T,Sp, nIO ` D

• Csat = saturate
Sp
L′,L′i

(CP(CI , nIO) ∪ CA(CI))

• R% = (G
[17→≤]
1 ∧ . . . ∧G[n7→≤]

n −→
cn
i=1Gi) with Gi = dFiemay for i = 1 . . . n.

Proof. By definition, we know that for all i ∈ {1, . . . , n}, T, τi `nIOIO Fiσ implies T, τi `nIOIO

dFiσemay. Since dFiσemay is not a sure-event, we can apply Theorem 1 to obtain that there
exists a derivation Di of dFiσemay at step τi from CA(CI) ∪ CP(CI , nIO) ∪ C<τie (T) such that
T,Sp, nIO ` Di. Note that CA(CI) contains Cstd. Moreover, by Lemma 28, we know that
CA(CI)∪CP(CI , nIO) is a well originated set of clauses. Since for all i ∈ {1, . . . , n}, (τi) ≤m τ̃ ,
we can apply Lemma 39 to obtain that HypL′,L′i(T, (τi)) holds. This allows us to apply
Theorem 2 and so for all i ∈ {1, . . . , n}, there exists a derivation D′i of dFiσemay at step τi
from Csat ∪ Ce(T) such that T,Sp, nIO ` D′i.

By definition of the saturation procedure, we know that clauses in Csat ∪ Ce(T) are all
selection-free clauses. Thus, we can define the ordered derivation D of

cn
i=1dFiσemay at step

τ1, . . . , τn from {R%} and Csat ∪ Ce(T) as follows:

The derivation D

G
[1 7→≤]
1 ∧ . . . ∧G[n 7→≤]

n −→
cn
i=1Gi

. . .D′1 D′n

cn
i=1dFiσemay

G1σ Gnσ

It remains to show that T,Sp, nIO ` D. We already showed that for all i ∈ {1, . . . , n},
T, τi `nIOIO dFiσemay and T,Sp, nIO ` D′i. Finally, for all i ∈ {1, . . . , n}, we trivially have that
τi [i 7→≤](i) τi. This allows us to conclude that T,Sp, nIO ` D.

Lemma 41. Consider the preamble Pverif . Let τ1, . . . , τn be n steps. Let F δ be an ordered fact
such that pred(F) ∈ Sp. Let H be a set of pairs of ordered facts and steps. Assume that the
domains of ordering functions are in {1, . . . , n}.

Let H ′ = {F ′ | (F ′δ′ , τ ′) ∈ H ∧ δ wo δ′}. If there exists a substitution σ such that:

• for all (F ′δ
′
, τ ′) ∈ H, if pred(F ′) ∈ Sp then T, τ ′ `i F ′σ; and for all i ∈ {1, . . . , n}, δ′(i)

being defined implies τ ′ δ′(i) τi;

• F is deducible from H ′ under some φ such that `i φσ

142

then there exists τ ≤ max({τ ′ | (F ′δ
′
, τ ′) ∈ H ∧ δ wo δ′}) such that T, τ `i Fσ and for all

i ∈ dom(δ), τ δ(i) τi.

Proof. By definition, since F is deducible from H ′ under some φ, we know that there exists a
partial derivation D of F from {(RInit), (RGen), (RFail), (Rf), (Rap), (Rtp)} such that:

• all facts in Fus(D) are in H ′

• φ is the conjunction of all formulae in Fus(D)

Let us prove this result by induction on the size of the partial derivation D.

Base case, D contains only a root and unlabeled leaf: In such a case, F is in fact an element of
H ′. Hence, there exists δ′ and τ ′ such that (F δ

′
, τ ′) ∈ H and δ wo δ′. Moreover, we also have

that T, τ ′ `i Fσ and for all i ∈ {1, . . . , n}, δ′(i) being defined implies τ ′δ′(i)τi. Since δ wo δ′,
we deduce that for all i ∈ dom(δ), τ ′ δ(i) τi. Hence the result holds by taking τ = τ ′.

Inductive step, the child of the root of D is a labeled node: Let us denote by R = (G1 ∧ . . . ∧
Gm ∧ φ′ −→ C) the rule labeling the root’s child of D.

By definition of a partial derivation, we know that there exists σ′ such that Cσ′ = F and
the outgoing edges of the root’s child of D are labeled by G1σ

′, . . . , Gmσ
′. Let us denote by

D1, . . . ,Dm the partial derivation of G1σ
′, . . . , Gmσ

′ respectively. Hence D is of the form:

The derivation D

G1 ∧ . . . ∧Gm ∧ φ′ −→ C

. . .D1 Dm

F

G1σ
′

Gmσ
′

Note that Fus(D) = {φ′σ′} ∪
⋃m
j=1 Fus(Dj). Therefore, if for all j ∈ {1, . . . ,m}, we denote by

φj the conjunction of all formulae in Fus(Dj) then for all j ∈ {1, . . . ,m}, Gjσ′ is deducible
from H ′ under φj . Moreover, we know by hypothesis that `i φσ where φ is the conjunction
of all formulae in Fus(D). Therefore, we obtain that for all j ∈ {1, . . . ,m}, `i φjσ.

Note that R ∈ {(RInit), (RGen), (RFail), (Rf), (Rap), (Rtp)} and we know that pred(C)
is either attk or tablek for some k. Thus by pred(F) ∈ Sp and by our preamble Pverif , we
know that for all j ∈ {1, . . . ,m}, pred(Gj) ∈ Sp. Since |Dj | < |D| for all j ∈ {1, . . . ,m},
we can apply our inductive hypothesis to obtain that there exist τ ′1, . . . , τ ′m such that for all
j ∈ {1, . . . ,m}, τ ′j ≤ max({τ ′ | (F ′δ′ , τ ′) ∈ H∧δ wo δ′}), T, τ ′j `i Gjσ′σ and for all i ∈ dom(δ),
τ ′j δ(i) τi.

As mentioned, we know that pred(C) is either attk or tablek for some k. The satisfaction
of these two predicates is monotonous, i.e. if they are satisfied at some step τ then they are
satisfied for any step after τ . Thus, by choosing τ = max(τ ′1, . . . , τ

′
m), we obtain that for all

j ∈ {1, . . . ,m}, T, τ `i Gjσ′σ. Finally, when R ∈ {(RInit), (RGen), (RFail), (Rf), (Rap)},
it corresponds to either the rule I-App, I-New or I-Phase which gives us that T, τ `i Cσ′σ
and so T, τ `i Fσ. When R is the rule (Rtp), then m = 1, G1σ

′ = tablek(M) and F =
tablek+1(M) for some k,M . By definition of the satisfaction relation, T, τ `i tablek(M)σ
implies T, τ `i tablek+1(M)σ and so T, τ `i Fσ.

143

Finally, we had τ ′j ≤ max({τ ′ | (F ′δ
′
, τ ′) ∈ H ∧ δ wo δ′}) for all j ∈ {1, . . . ,m}. With

τ = max(τ ′1, . . . , τ
′
m), we deduce that τ ≤ max({τ ′ | (F ′δ′ , τ ′) ∈ H ∧ δ wo δ′}). Furthermore,

for all i ∈ dom(δ), for all τ ′j δ(i) τi. Hence max(τ ′1, . . . , τ
′
m) δ(i) τi and so τ δ(i) τi.

Lemma 42. Consider the preamble Pverif . Let T ∈ tracenIOIO (CI ,−→i). Let % = (
∧n
i=1 Fi ⇒ ψ)

be a disjunct query. Let (R, σs,M) be a solution of %, with R = (H ∧ φ −→ C). Let σ be a
substitution. Let D be an ordered derivation of

cn
i=1dFiσemay at some steps τ̃ = (τ1, . . . , τn)

such that T,Sp, nIO ` D and the root’s child of D is labeled by R.
There exists an annotated query conclusion Ψ and a substitution σd such that:

• C =
cn
i=1dFiσsemay, σd `i φ and the outgoing edges of the root’s child of D are labeled

by Hσd;

• Fiσsσd = Fiσ for i = 1 . . . n and Ψ = ψ;

• (`i, T, (τ̃ , σ)) |= Ψσsσd;

• for all F δ,µ ∈ Ψ, dom(µ) = {(τ̃ , σ)};

• for all F δ,µ ∈ Ψ with F an (inj-)event, there exists δ′ such that (F δ, δ′) ∈ M such that
for all i ∈ dom(δ′), µ(τ̃ , σ) δ′(i) τi.

Proof. Let us rename H by Gδ11 ∧ . . .∧Gδmm . With (R, σs,M) being a solution of %, we deduce
that C =

cn
i=1 F

′
i where F

′
i = dFiσsemay for i = 1 . . . n. Moreover, since the root’s child of D

is labeled by R, we know that there exist a substitution σd and some steps τG1 , . . . , τGm such
that:

• for all i ∈ {1, . . . , n}, F ′iσd = dFiσemay

• `i φσd

• for all j ∈ {1, . . . ,m}, if pred(Gj) ∈ Sp then T, τGj `
nIO
IO Gjσd

• for all j ∈ {1, . . . ,m}, for all i ∈ {1, . . . , n}, if δj(i) is defined then τGj δj(i) τi.

Note that since F ′i = dFiσsemay, we obtain that Fiσsσd = Fiσ for i = 1 . . . n.
Consider a formula φ′ in ψ. By definition of (R, σs,M) being a solution of %, we deduce

that φ |= φ′σs. Since `i φσd, we obtain that `i φ′σsσd.
Let us show how to build Ψ. Consider F δ ∈ ψ an ordered event. Since (R, σs,M) is a

solution of %, we know that there exists δ′ such that (F δ, δ′) ∈ M, δ wo δ′ and one of the
following two properties holds:

1. there exists i ∈ {1, . . . , n} such that dFσsemay = F ′i and δ
′ = [i 7→ ≤]: In such a case, we

annotate F δ in Ψ by the partial function µ only defined on (τ̃ , σ) such that µ(τ̃ , σ) = τi.
Notice that thanks to T,Sp, nIO ` D, we know that T, τi `nIOIO dFiσemay and F ′iσd =
dFiσemay. Hence we obtain that dFσsσdemay = dFiσemay and so T, τi `nIOIO dFσsσdemay
which implies T, τi `nIOIO Fσsσd. This allows us to deduce that T, τi `i Fσsσd.
Consider k ∈ {1, . . . , n} such that δ(k) is defined. We know that δ wo δ′ with δ′ = [i 7→
≤]. Hence, δ(k) being defined implies δ′(k) is defined and so k = i. Moreover, we also
deduce from δ wo δ′ that δ(i) = ≤. Since we defined µ(τ̃ , σ) = τi, we trivially have that
µ(τ̃ , σ) δ(i) τi.

144

2. there exists j ∈ {1, . . . ,m} such that dFσsesure = Gj and δ′ = δj : In such a case, we
annotate F δ in Φ by the partial function µ only defined on (τ̃ , σ) such that µ(τ̃ , σ) = τGj .
Since dFσsesure = Gj , we have dFσsσdesure = Gjσd. Since F is an ordered event and
dFσsesure = Gj , then pred(Gj) ∈ Sp by our preamble Pverif and so T, τGj `

nIO
IO Gjσd by

hypothesis. Hence, we deduce that T, τGj `
nIO
IO dFσsσdesure which implies T, τGj `

nIO
IO

Fσsσd and so T, τGj `i Fσsσd.
Consider k ∈ {1, . . . , n} such that δ(k) is defined. We know that δ wo δj . Hence δ(k)
being defined implies δj(k) is defined. Moreover, since τGjδj(k)τk by hypothesis, we
deduce from δ wo δj that τGj δ(k) τk.

In both cases, we have shown that (`i, T, (τ̃ , σ)) |= Fµ,δ.
Finally, let us consider F δ ∈ ψ an ordered attacker, message or table fact. Since (R, σs,M)

is a solution of %, we know that Fσs is deducible from {Gj | δ wo δj ∧ j = 1 . . .m∧pred(Gj) ∈
Sp} under some φ′′ such that φ |= φ′′. Let us consider the setH0 = {(Gδjj , τGj)}mj=1. We already
showed at the beginning of this proof that `i φσd; for all j ∈ {1, . . . ,m}, T, τGj `

nIO
IO Gjσd;

and for all i ∈ {1, . . . , n}, if δj(i) is defined then τGj δj(i) τi. Hence by Lemma 41, there
exists τ ≤ max({τGj | δ wo δj ∧ j = 1 . . .m}) such that T, τ `i Fσsσd and for all i ∈ dom(δ),
τ δ(i) τi. Hence, we annotate F δ in Φ by the partial function µ only defined on (τ̃ , σ) such
that µ(τ̃ , σ) = τ . This allows us to conclude that (`i, T, (τ̃ , σ)) |= Ψσsσd.

Lemma 43. Consider the preamble Pverif . Let Csat be a set of selection-free clauses. Let C
and C′ be sets of ordered clauses such that C completely covers C′.

For all T ∈ tracenIOIO (CI ,−→i), for all tuples of steps τ̃ , for all ground conjunction facts F ,
for all ordered derivations D of F at steps τ̃ from C and Csat∪Ce(T) such that T,Sp, nIO ` D,
there exists a derivation D′ of F at steps τ̃ from C′ and Csat∪Ce(T) such that T,Sp, nIO ` D′

Proof. By Definition 26, D being an ordered derivation of F at steps τ̃ from C and Csat∪Ce(T)
implies that there exists an ordered clause R = (H ∧ φ −→ C) ∈ C and a substitution σ such
that Cσ = F , σ `i φ, Hσ is ground and D is as follows:

The derivation D

H ∧ φ −→ C

DH

F, τ̃

Hσ

By Definition 31, we know that there exist formulas φ1, . . . , φm such that φ1∨. . .∨φm ≡ >,
for all i ∈ {1, . . . ,m}, fv(φi) ⊆ fv(C,H, φ). Considering that σ |= φ, σ is grounding for C,H
and φ1 ∨ . . . ∨ φm ≡ >, we deduce that there exists i ∈ {1, . . . ,m} such that σ |= φi which
implies σ |= φ ∧ φi. Note that by Definition 31, the ordered clause H ∧ φ ∧ φi −→ C is in
C′. Hence, we can build the derivation D′ obtained from D by replacing the ordered clause R
labeling the root’s child of D by H ∧ φ∧ φi −→ C. Since we only modified the formulas within
the rule, we directly obtain that T,Sp, nIO ` D implies T,Sp, nIO ` D′.

145

Lemma 44. Consider the preamble Pverif . Let T ∈ tracenIOIO (CI ,−→i). Let % = (
∧n
i=1 Fi ⇒

ψ ∧
∧`
k=1G

δk
k ψk).

Let τ̃ = (τ1, . . . , τn) be a tuple of steps. Let τG1 , . . . , τG` be a tuple of steps such that for
all k ∈ {1, . . . , `}, for all i ∈ dom(δk), τGk δk(i) τi.

Let σ, σs, σd be three substitutions and %′ be the query %′ = (
∧n
i=1 Fiσs ∧

∧`
k=1Gkσs ⇒

ψσs ∧
∧`
k=1 ψ

δk[n+k 7→≤]
k σs) such that T, τi `nIOIO Fiσsσd for i = 1 . . . n and T, τGk `

nIO
IO Gkσsσd

for k = 1 . . . `.
By denoting τ̃ ′ = (τ1, . . . , τn, τG1 , . . . , τG`), if there exists an annotated query conclusion

Ψ′ and a substitution σ%′ such that:

• Ψ′ = ψσs ∧
∧`
k=1 ψ

δk[n+k 7→≤]
k σs and for all F δ,µ ∈ Ψ′, dom(µ) ⊆ {(τ̃ ′, σd)}

• Fiσ = Fiσsσd = Fiσsσ%′ for i = 1 . . . n and Gkσsσd = Gkσsσ%′ for k = 1 . . . `

• (`i, T, (τ̃ ′, σd)) |= Ψ′σ%′

• for all F δ,µ ∈ Ψ′, if µ(τ̃ ′, σd) is defined then T, µ(τ̃ ′, σd) `i Fσ%′

then there exists an annotated query conclusion Ψ and a substitution σ% such that:

• Ψ = ψ ∧
∧`
k=1G

δk
k ψk and for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)}

• Fiσ = Fiσ% for i = 1 . . . n

• (`i, T, (τ̃ , σ)) |= Ψσ%

• for all F δ,µ ∈ Ψ, if µ(τ̃ , σ) is defined then T, µ(τ̃ , σ) `i Fσ% and either there exists
F ′δ

′,µ′ ∈ Ψ′ such that F ′σ%′ = Fσ% and µ(τ̃ , σ) = µ′(τ̃ ′, σd) or there exists k ∈ {1, . . . , `}
such that Gkσsσ%′ = Fσ%.

Proof. Let us build Ψ from Ψ′ such that Ψ = ψ ∧
∧`
k=1G

δk
k ψk and for all F δ ∈ ψ (resp.

ψk for k = 1 . . . `), if F δσs is annotated by µ′ in Ψ′ then in Ψ, we annotate F δ by µ such
that dom(µ) = ∅ iff dom(µ′) = ∅ and µ′(τ̃ ′, σd) is defined implies that µ′(τ̃ ′, σd) = µ(τ̃ , σ).
Moreover, for all k ∈ {1, . . . , `}, we annotate Gδkk by µk such that dom(µk) = {(τ̃ , σ)} and
µk(τ̃ , σ) = τGk . Let us define σ% = σsσ%′ . Note that with Fiσ = Fiσsσ%′ for i = 1 . . . n by
hypothesis, we trivially have that Fiσ = Fiσ% for i = 1 . . . n.

By hypothesis, we know that for all k ∈ {1, . . . , `}, Gkσsσd = Gkσsσ%′ = Gkσ% and
T, τGk `

nIO
IO Gkσsσd and for all i ∈ dom(δk), τGk δk(i) τi. With Gk being events, we obtain

that (`i, T, (τ̃ , σ)) |= Gδk,µkk σ%.
Similarly, for all F δ ∈ ψ, let us denote µ′ and µ the partial functions associated to F δσs

in Ψ′ and to F δ in Ψ respectively. We know that if µ′(τ̃ ′, σd) is defined then µ′(τ̃ ′, σd) =
µ(τ̃ , σ) and T, µ′(τ̃ ′, σd) `i Fσsσ%′ . Hence T, µ(τ̃ , σ) `i Fσ%. Furthermore, F δ,µ′σs ∈ Ψ′

and µ′(τ̃ ′, σd) defined implies that there exists F ′δ′ ∈ ψ% such that F ′σ′ = Fσsσ%′ = Fσ%.
Finally, since (`i, T, (τ̃ ′, σd)) |= Ψ′σ%′ , we also deduce that if (`i, T, (τ̃ ′, σd)) |= F δ,µ

′
σsσ%′

then for all i ∈ dom(δ), µ′(τ̃ ′, σd) δ(i) τi and so µ(τ̃ , σ) δ(i) τi. This allows us to deduce
(`i, T, (τ̃ , σ)) |= F δ,µσ%. This conclude the proof Item 4 of the lemma.

For all k ∈ {1, . . . , `}, let us denote Ψk the restriction of Ψ to ψk, i.e. Ψk = ψk. For
all F δ ∈ ψk, let us denote µ′ and µ the partial functions associated to F δ[n+k 7→≤]σs in Ψ′

and to F δ in Ψ respectively. Similarly to the previous case (i.e. F δ ∈ ψ), we have that if

146

µ′(τ̃ ′, σd) is defined then T, µ(τ̃ , σ) `i Fσ%. Moreover, F δ[n+k 7→≤],µ′σs ∈ Ψ′ and µ′(τ̃ ′, σd)
defined implies that there exists F ′δ′ ∈ ψ% such that F ′σ′ = Fσsσ%′ = Fσ%. Finally, since
(`i, T, (τ̃ ′, σd)) |= Ψ′σ%′ , we also deduce that if (`i, T, (τ̃ ′, σd)) |= F δ[n+k 7→≤],µ′σsσ%′ then for
all i ∈ dom(δ), µ′(τ̃ ′, σd) δ(i) τi and so µ(τ̃ , σ) δ(i) τi; and µ′(τ̃ ′, σd) ≤ τGk . This allows
us to prove that (`i, T, (τ̃ , σ)) |= Ψkσ% and for all F δ,µ ∈ Ψk, if µ(τ̃ , σ) is defined then
µ(τ̃ , σ) ≤ τGk . Since we already proved that (`i, T, (τ̃ , σ)) |= Gδk,µkk σ% with µk(τ̃ , σ) = τGk ,
we therefore obtain that (`i, T, (τ̃ , σ)) |= Gδk,µkk σ% Ψk.

This conclude the proof of (`i, T, (τ̃ , σ)) |= Ψσ%.

E.2 Main proof

Lemma 45. Consider the preamble Pverif . Assume that for all % = (
∧n
i=1 Fi ⇒ ψ) ∈ Q ∪ Li,

there exists Sol% such that verify(%,Rq,Sol%) terminates and is true where Rq = (G
′[17→≤]
1 ∧

. . . ∧G′[n7→≤]
n −→

cn
i=1G

′
i) and G′i = dFiemay for i = 1 . . . n.

For all % ∈ Q ∪ Li, for all traces T ∈ tracenIOIO (CI ,−→i), if % = (
∧n
i=1 Fi ⇒ ψ) then there

exists an annotated query conclusion Ψ such that

1. for all F δ,µ ∈ Ψ, for all (τ1, . . . , τn, σ) ∈ dom(µ), T, τi `nIOIO Fiσ for i = 1 . . . n

2. for all tuples of steps τ̃ = (τ1, . . . , τn) and all substitutions σ, if T, τi `nIOIO Fiσ for
i = 1 . . . n then there exist (R = (H ∧ φ −→ C), σs, %s) ∈ Sol%, a derivation D and two
substitutions σ%, σd such that:

(a) Ψ = ψ, Fiσ = Fiσ% for i = 1 . . . n and (`i, T, (τ̃ , σ)) |= Ψσ%

(b) %s is of the form
∧m
i=1Gi ⇒ ψ% with m ≥ n and Fiσ = Giσsσd for i ≤ n

(c) D is a derivation of
cm
i=1dGiσsσdemay at steps (τ1,%, . . . , τm,%) from {R} and Csat∪

Ce(T) such that T,Sp, nIO ` D and τi = τi,% for i ≤ n, C =
cm
i=1dGiemayσs,

σd `i φ and the outgoing edges of the root’s child of D are labeled by Hσd
(d) for all F δ,µ ∈ Ψ, if µ(τ̃ , σ) is defined then T, µ(τ̃ , σ) `i Fσ% and either there exists

F ′δ
′ ∈ ψ% such that F ′σsσd = Fσ% or there exists n + 1 ≤ i ≤ m such that

Giσsσd = Fσ%.

Proof. To prove this lemma, we need to prove an inside property.

Inside property: For all nnest ∈ N, for all T ∈ tracenIOIO (CI ,−→i), for all n ∈ N, for all tuples of
steps τ̃ = (τ1, . . . , τn), for all sets of queries Q′, for all % ∈ Q′, for all substitutions σ, if

• Li ⊆ Q′

• % = (
∧n
i=1 Fi ⇒ ψ) and % contains at most nnest instances of the nested relation

• there exist an ordered clause Rq, a set Sol% such that verify(%,Rq,Sol%) is true and

– either T, τi `nIOIO Fiσ for i = 1 . . . n and Rq = (G
′[1 7→≤]
1 ∧ . . . ∧G′[n7→≤]

n −→
cn
i=1G

′
i)

and G′i = dFiemay for i = 1 . . . n

– or there exists a derivation Dq of
cn
i=1dFiemayσ at steps τ̃ from {Rq} and Csat ∪

Ce(T) such that T,Sp, nIO ` Dq,

then there exists an annotated query conclusion Ψ such that:

147

1. for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)}

2. there exist (R = (H∧φ −→ C), σs, %s) ∈ Sol%, a derivation D and two substitutions σ%, σd
such that:

(a) Ψ = ψ, Fiσ = Fiσ% for i = 1 . . . n and (`i, T, (τ̃ , σ)) |= Ψσ%

(b) %s is of the form
∧m
i=1Gi ⇒ ψ% with m ≥ n and Fiσ = Giσsσd for i ≤ n

(c) D is a derivation of
cm
i=1dGiσsσdemay at steps (τ1,%, . . . , τm,%) from {R} and Csat ∪

Ce(T) such that T,Sp, nIO ` D and τi = τi,% for i ≤ n, C =
cm
i=1dGiσsemay,

σd `i φ and the outgoing edges of the root’s child of D are labeled by Hσd
(d) for all F δ,µ ∈ Ψ, if µ(τ̃ , σ) is defined then T, µ(τ̃ , σ) `i Fσ% and either there exists

F ′δ
′ ∈ ψ% such that F ′σsσd = Fσ% or there exists n + 1 ≤ i ≤ m such that

Giσsσd = Fσ%.

Proof of the main result: Assume for now that the inside property is true. We show how we
can derive from it the main result. Notice that the main difference between the main result
and the inside property is the inversion of quantifier between the existential quantification
of annotated query conclusion Ψ and the universal quantification of the tuples of steps τ̃
and substitution σ. More specifically, since verify(%,Rq,Sol%) terminates and is true where
Rq = (G

′[1 7→≤]
1 ∧ . . . ∧ G′[n7→≤]

n −→
cn
i=1G

′
i) and G′i = dFiemay for i = 1 . . . n, by the inside

property, we know that for all tuples of steps τ̃ = (τ1, . . . , τn) and all substitutions σ, if
T, τi `nIOIO Fiσ for i = 1 . . . n then there exists an annotated query conclusion Ψτ̃ ,σ satisfying
Items 1 and 2. However, Item 1 of the inside property indicates that the annotated query
conclusion Ψτ̃ ,σ is built such that for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)}, that is, either µ is not
defined or µ is only defined on (τ̃ , σ).

Hence, we can build an annotated query conclusion Ψ such that for all instances of F δ in
ψ, we associate the partial function µ′ where for all τ̃ = (τ1, . . . , τn) and all substitutions σ,

• if T, τi `nIOIO Fiσ for i = 1 . . . n then µ′|(τ̃ ,σ) = µ where µ is the partial function associated
to this instance of F δ in Ψτ̃ ,σ

• µ′(τ̃ , σ) is not defined otherwise.

Notice that Ψ is well defined since the partial functions Ψτ̃ ,σ and Ψτ̃ ′,σ′ necessarily have disjoint
domain when (τ̃ , σ) 6= (τ̃ ′, σ′).

By construction, we directly have that Ψ satisfy Item 1 of the main result. Furthermore,
since for all tuples of steps τ̃ = (τ1, . . . , τn) and all substitutions σ, if T, τi `nIOIO Fiσ for
i = 1 . . . n then the annotated query conclusion Ψτ̃ ,σ satisfies Item 2 of the inside property,
we also deduce that Ψ satisfies Item 2 of the main result which allows us to conclude.

Proof of inside property: We prove this property by induction on (nnest, T, τ̃) with the order
< defined as (nnest, T, τ̃) < (n′nest, T

′, τ̃ ′) when nnest < n′nest or (nnest = n′nest and (T, τ̃) <ind
(T ′, τ̃ ′)).

In the base case, nnest = 0, T is the empty trace and τ̃ is the empty tuple. Since there is
no query of the form

∧n
i=1 Fi ⇒ ψ with n = 0 then the result trivially holds.

In the inductive step, let Q′ be a set of queries, % = (
∧n
i=1 Fi ⇒ ψ) ∈ Q′ and σ a

substitution such that:

148

• Li ⊆ Q′

• % contains at most nnest instances of the nested relation

• there exist an ordered clause Rq, a set Sol% such that verify(%,Rq,Sol%) is true and

– either T, τi `nIOIO Fiσ for i = 1 . . . n and Rq = (G
′[1 7→≤]
1 ∧ . . . ∧G′[n7→≤]

n −→
cn
i=1G

′
i)

and G′i = dFiemay for i = 1 . . . n

– or Rq satisfies Sp and there exists a derivation Dq of
cn
i=1dFiσemay at steps τ̃ from

{Rq} and Csat ∪ Ce(T) such that T,Sp, nIO ` Dq,

Note if % contains n′next < nnest instances of the nested relation , we can directly conclude
by applying our inductive hypothesis on (n′nest, T, τ̃). Thus, let us assume that % contains
nnest instances of the nested relation .

We show that when nnest = 0, HypL,Li(T, τ̃) holds and when nnest > 0, HypL∪Li,∅(T, τ̃)
holds. By our preamble Pverif , we know that for all %′ ∈ L, (`nIOIO ,`i, tracenIOIO (CI ,−→i)) |= %′.
Let %′ = (

∧n′

i=1 F
′
i ⇒ ψ′) ∈ Li. By hypothesis of the lemma, we know that there exists Sol%′

such that verify(%′, R′q,Sol%′) terminates and is true where R′q = (G
′[17→≤]
1 ∧ . . .∧G′[n7→≤]

n′ −→
cn′

i=1G
′
i) and G′i = dF ′iemay for i = 1 . . . n′.

• Case nnest = 0: Let T ′ ∈ tracenIOIO (CI ,−→i) and let τ̃ ′ = (τ ′1, . . . , τ
′
n′) be a tuple of steps

such that (T ′, τ̃ ′) <ind (T, τ̃). By definition, %′ is non-nested and non-injective. To show
that HypL,Li(T, τ̃) holds, we need to prove that IHT ′,τ̃ ′ holds. Let σ′ be a substitution.
If T ′, τ ′i `

nIO
IO F ′iσ

′ for i = 1 . . . n′ then we can apply our inductive hypothesis on (0, T ′, τ̃ ′)
to obtain that there exists an annotated query conclusion Ψσ′ and a substitution σ%′ such
that

– for all F δ,µ ∈ Ψσ′ , dom(µ) ⊆ {(τ̃ ′, σ′)}
– Ψσ′ = ψ′, F ′iσ

′ = F ′iσ%′ for i = 1 . . . n′ and (`i, T ′, (τ̃ ′, σ′)) |= Ψσ′σ%′ .

Hence similarly to the proof of the main result, since the domain of partial functions are
disjoint from two annotated query conclusions Ψσ′

1
and Ψσ′

2
with σ′1 6= σ′2, we can create

an annotated query conclusion Ψ such that for all instances of F δ in ψ′, we associate
the partial function µ′ where for all substitutions σ′,

– if T ′, τ ′i `
nIO
IO F ′iσ

′ for i = 1 . . . n′ then µ′|(τ̃ ′,σ′) = µ where µ is the partial function
associated to this instance of F δ in Ψσ′

– µ′(τ̃ ′, σ′) is not defined otherwise.

Once again, Ψ is well defined and satisfies for all substitutions σ′, if T ′, τ ′i `
nIO
IO F ′iσ

′

for i = 1 . . . n′ then there exists σ%′ such that F ′iσ
′ = F ′iσ%′ for i = 1 . . . n′ and (`i

, T ′, (τ̃ ′, σ′)) |= Ψσ%′ which allows us to deduce that IHT ′,τ̃ ′ holds and so HypL,Li(T, τ̃)
holds.

• Case nnest > 0: To prove HypL∪Li,∅(T, τ̃), we need to show that for all %′ ∈ Li, (`nIOIO

,`i, tracenIOIO (CI ,−→i)) |= %′. The proof is in fact very similar to the case nnest = 0. Let
T ′ ∈ tracenIOIO (CI ,−→i), let τ̃ ′ = (τ ′1, . . . , τ

′
n′) be a tuple of steps and σ′ a substitution such

that T, τ ′i `
nIO
IO F ′iσ

′ for i = 1 . . . n′. Since %′ is non-nested and non-injective, we can
apply our inductive hypothesis on (0, T ′, τ̃ ′) to obtain that there exists an annotated
query conclusion Ψτ̃ ′,σ′ and a substitution σ%′ such that

149

– for all F δ,µ ∈ Ψτ̃ ′,σ′ , dom(µ) ⊆ {(τ̃ ′, σ′)}
– Ψτ̃ ′,σ′ = ψ′, F ′iσ

′ = F ′iσ%′ for i = 1 . . . n′ and (`i, T ′, (τ̃ ′, σ′)) |= Ψτ̃ ′,σ′σ%′ .

Once again, since the domain of partial functions are disjoint from two annotated query
conclusions Ψτ̃ ′1,σ

′
1
and Ψτ̃ ′2,σ

′
2
with (τ̃ ′1, σ

′
1) 6= (τ̃ ′2, σ

′
2), we can create an annotated query

conclusion Ψ such that for all instances of F δ in ψ′, we associate the partial function µ′

where for all tuples of steps τ̃ ′ = (τ ′1, . . . , τ
′
n′), for all substitutions σ′,

– if T ′, τ ′i `
nIO
IO F ′iσ

′ for i = 1 . . . n′ then µ′|(τ̃ ′,σ′) = µ where µ is the partial function
associated to this instance of F δ in Ψτ̃ ′,σ′

– µ′(τ̃ ′, σ′) is not defined otherwise.

Ψ is well defined and satisfies for all tuples of steps τ̃ ′ = (τ ′1, . . . , τ
′
n′), for all substitutions

σ′, if T ′, τ ′i `
nIO
IO F ′iσ

′ for i = 1 . . . n′ then there exists σ%′ such that F ′iσ
′ = F ′iσ%′ for

i = 1 . . . n′ and (`i, T ′, (τ̃ ′, σ′)) |= Ψσ%′ . This allows us to conclude that (`nIOIO ,`i
, tracenIOIO (CI ,−→i)) |= %′.

Now that we proved the two properties on the inductive lemmas, we can complete the
proof by doing another case analysis on nnest. Recall that by construction, Csat is a set of
selection free, simplified clauses. Moreover, from Lemmas 28 and 31, we also know that Csat
is a set of well-originated clauses containing the selection free clauses of Cstd.

• Case nnest = 0: In such a case, we know that ψ is of the form
∨m
j=1 ψj . Moreover,

since verify(%,Rq,Sol%) is true and by denoting Cs = saturateS
Sp
L,Li({Rq},Csat), we

deduce that there exists C′s completely covering Cs such that for all R ∈ C′s, there exists
j0 ∈ {1, . . . ,m}, a substitution σs and a matchingM such thatR, σs,M |=

∧n
i=1 Fi ⇒ ψj0

and (R, σ,
∧n
i=1 Fi ⇒ ψj0) ∈ Sol%.

By hypothesis, we know that either (i) there exists a derivation Dq of
cn
i=1dFiσemay at

steps τ̃ from {Rq} and Csat ∪ Ce(T) such that T,Sp, nIO ` Dq, or (ii) T, τi `nIOIO Fiσ

for i = 1 . . . n and Rq = (G
′[17→≤]
1 ∧ . . . ∧ G′[n 7→≤]

n −→
cn
i=1G

′
i) and G′i = dFiemay for

i = 1 . . . n. In Case (ii), by applying Lemma 40 we obtain that Case (i) is also satisfied.
Hence we deduce that there exists a derivation Dq of

cn
i=1dFiσemay at steps τ̃ from {Rq}

and Csat ∪ Ce(T) such that T,Sp, nIO ` Dq.
Note that the ordering functions in Rq do not have < in their image. Hence Rq directly
satisfies Sp. We can therefore apply Theorem 4 and lemma 43 to obtain that there
exists a derivation D of

cn
i=1dFiσemay at steps τ̃ from C′s and Csat ∪ Ce(T) such that

T,Sp, nIO ` D.
Let R = (H ∧ φ −→ C) be the ordered clause of C′s labeling the root’s child of D. We
know that R, σs,M |=

∧n
i=1 Fi ⇒ ψj0 . Hence, by Lemma 42, we deduce that there exists

a annotated query conclusion Ψj0 and a substitution σd such that:

– C =
cn
i=1dFiσsemay, σd `i φ and the outgoing edges of the root’s child of D are

labeled by Hσd;
– Fiσsσd = Fiσ for i = 1 . . . n and Ψj0 = ψj0 ;
– (`i, T, (τ̃ , σ)) |= Ψj0σsσd;
– for all F δ,µ ∈ Ψj0 , dom(µ) = {(τ̃ , σ)}

150

Let us build Ψ by extending Ψj0 to ψ. More specifically, Ψ =
∨m
j=1 Ψ′j where Ψ′j0 = Ψj0

and for all j 6= j0, Ψ′j = ψj and for all F δ,µ ∈ Ψ′j , dom(µ) = ∅. Intuitively, all partial
functions µ are undefined for all j 6= j0.

Since for all F δ,µ ∈ Ψj0 , dom(µ) = {(τ̃ , σ)}, then by construction of Ψ, we deduce
that for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)} which allows us to prove Item 1 of the inside
property.

Let us define σ% = σsσd. Since (`i, T, (τ̃ , σ)) |= Ψj0σsσd, we have (`i, T, (τ̃ , σ)) |= Ψj0σ%.
Since Ψ =

∨m
j=1 Ψ′j with Ψ′j0 = Ψj0 , we deduce that (`i, T, (τ̃ , σ)) |= Ψσ%. Moreover,

since Fiσsσd = Fiσ for i = 1 . . . n, we obtain Fiσ% = Fiσ for i = 1 . . . n and so Item 2a
of the inside property holds.

We already showed that (R, σ,
∧n
i=1 Fi ⇒ ψj0) ∈ Sol%, hence by taking m = n, Gi = Fi

for i = 1 . . . n and ψ% = ψj0 , we directly obtain Items 2b and 2c of the inside property.

Finally, by construction of Ψ, for all F δ,µ ∈ Ψ, if µ(τ̃ , σ) is defined then F δ,µ ∈ Ψj0

and F δ ∈ ψj0 . Since Ψj0 is a conjunction and so does not contain any disjunction,
(`i, T, (τ̃ , σ)) |= Ψj0σsσd implies that T, µ(τ̃ , σ) `i Fσsσd. With σ% = σsσd, we conclude
that T, µ(τ̃ , σ) `i Fσ% and there exists F ′δ′ ∈ ψj0 such that F ′σsσd = Fσ% (by taking
F ′ = F and δ′ = δ). This allows us to prove Item 2d of the inside property.

• Case nnest > 0: In such a case, we know that ψ is of the form
∨m
j=1(ψj ∧

∧`j
k=1 F

δk,j
k,j

ψk,j). Moreover, since verify(%,Rq,Sol%) terminates, is true and by denoting Cs =

saturateS
Sp
L∪Li,∅({Rq},Csat), we deduce that there exists C

′
s completely covering Cs such

that for all R ∈ C′s, there exists j0 ∈ {1, . . . ,m}, a substitution σs and a matching M
such that

– R, σs,M |=
∧n
i=1 Fi ⇒ ψj0 ∧

∧`j0
k=1 F

δk,j0
k,j0

– verify(%′, R′q,Sol%)

– (R′q, %
′) = gen_nested(

∧n
i=1 Fi ⇒ ψj0 ∧

∧`j0
k=1 F

δk,j0
k,j0

 ψk,j0 , (R, σs,M))

Finally, by our hypotheses, we know that either (i) there exists a derivation Dq ofcn
i=1dFiσemay at steps τ̃ from {Rq} and Csat ∪ Ce(T) such that T,Sp, nIO ` Dq, or

(ii) T, τi `nIOIO Fiσ for i = 1 . . . n and Rq = (G
′[17→≤]
1 ∧ . . . ∧ G′[n7→≤]

n −→
cn
i=1G

′
i) and

G′i = dFiemay for i = 1 . . . n. We already proved that HypL∪Li,∅(T, τ̃). Hence in Case
(ii), by applying Lemma 40 we obtain that Case (i) is also satisfied. Hence we deduce
that there exists a derivation Dq of

cn
i=1dFiσemay at steps τ̃ from {Rq} and Csat∪Ce(T)

such that T,Sp, nIO ` Dq.
We can now apply Theorem 4 and lemma 43 to obtain that there exists a derivation D′q
of

cn
i=1dFiσemay at steps τ̃ from C′s and Csat ∪ Ce(T) such that T,Sp, nIO ` D′q.

Let R = (H∧φ −→ C) be the ordered clause of C′s labeling the root’s child ofD′q. We know

that that there exists j0 ∈ {1, . . . ,m} such that R, σs,M |=
∧n
i=1 Fi ⇒ ψj0 ∧

∧`j0
k=1 F

δk,j0
k,j0

.
Hence, by Lemma 42, we deduce that there exists a annotated query conclusion Ψe

j0
and

a substitution σd such that:

– C =
cn
i=1dFiσsemay, σd `i φ and the outgoing edges of the root’s child of D are

labeled by Hσd;

151

– Fiσsσd = Fiσ for i = 1 . . . n and Ψe
j0

= ψj0 ∧
∧`j0
k=1 F

δk,j0
k,j0

;

– (`i, T, (τ̃ , σ)) |= Ψe
j0
σsσd

– for all k ∈ {1, . . . , `j0}, if we denote by µk the partial function associated to F
δk,j0
k,j0

in Ψe
j0

then there exists δ′k,j0 such that (F
δk,j0
k,j0

, δ′k,j0) ∈M and for all i ∈ dom(δ′k,j0),
µk(τ̃ , σ) δ′k,j0(i) τi.

Note that since ψj0 ∧
∧`j0
k=1 F

δk,j0
k,j0

is only a conjunction of facts and formulas, we deduce
from (`i, T, (τ̃ , σ)) |= Ψe

j0
σsσd that for all k ∈ {1, . . . , `j0}, T, µk(τ̃ , σ) `i Fk,j0σsσd. Note

that Fk,j0 being an event, we have T, µk(τ̃ , σ) `nIOIO Fk,j0σsσd and so T, µk(τ̃ , σ) `nIOIO

dFk,j0σsσdemay. Since we already proved that HypL∪Li,∅(T, τ̃) holds, we deduce from
Theorems 1 and 2 that there exists a derivation Dk of dFk,j0σsσdemay at step µk(τ̃ , σ)
from Csat ∪ Ce(T) such that T,Sp, nIO ` Dk.

Consider the annotated clauseR′q = H∧
∧`j0
k=1dF

δ′k,j0
[n+k 7→≤]

k,j0
emayσs −→ Cf

c`j0
k=1dFk,j0e

mayσs.
If we denote τ ′1, . . . , τ ′`j0 the steps µ1(τ̃ , σ), . . . , µ`j0 (τ̃ , σ) respectively and we denote
τ̃ ′ = τ1, . . . , τn, τ

′
1, . . . , τ

′
`j0

then we can build the ordered derivation Dq of Cσd f
c`j0
k=1dFk,j0e

mayσsσd at step τ̃ ′ from {R′q} and Csat ∪ Ce(T) as follows:

The derivation Dq

H ∧
∧`j0
k=1dF

δ′k,j0
[n+k 7→≤]

k,j0
emayσs −→ C f

c`j0
k=1dFk,j0e

mayσs

. . .D1 D`j0DH

Cσd
c`j0
k=1dFk,j0e

mayσsσd, τ̃
′

dF1,j0emayσsσd, τ ′1 dF`j0 ,j0e
mayσsσd, τ

′
`0Hσd

Consider now the query %′ =
∧n
i=1 Fiσs ∧

∧`j0
k=1 Fk,j0σs ⇒ ψj0σs ∧

∧`j0
k=1 ψ

δk,j0 [n+k 7→≤]

k,j0
σs.

SinceR′q, %′ are in fact the result of gen_nested(
∧n
i=1 Fi ⇒ ψj0∧

∧`j0
k=1 F

δk,j0
k,j0

, (R, σs,M));
verify(%,Rq,Sol%) implies verify(%′, R′q,Sol%) and %′ contains strictly less nested queries
than %, we can apply our inductive hypothesis on it with the trace T , the tuple of steps
τ̃ ′, the set of query {%′} ∪ Li and the substitution σd.

This allows us to deduce that there exists an annotated query conclusion Ψ′j0 such that:

1. for all F δ,µ ∈ Ψ′j0 , dom(µ) ⊆ {(τ̃ ′, σd)}
2. there exists (R′ = (H ′ ∧ φ′ −→ C ′), σ′s, %s) ∈ Sol%′ , a derivation D and two substitu-

tions σ%′ ,σ′d such that:

(a) Ψ′j0 = ψj0σs ∧
∧`j0
k=1 ψ

δk,j0 [n+k 7→≤]

k,j0
σs, Fiσsσd = Fiσsσ%′ for i = 1 . . . n and

Fk,j0σsσd = Fk,j0σsσ%′ for k = 1 . . . `j0 and (`i, T, (τ̃ ′, σd)) |= Ψ′j0σ%′

(b) %s is of the form
∧m′

i=1Gi ⇒ ψ%′ with m′ ≥ n + `j0 and Fiσsσd = Giσ
′
sσ
′
d for

i ≤ n and Fk,j0σsσd = Gn+kσ
′
sσ
′
d for 1 ≤ k ≤ `j0 .

152

(c) D is a derivation of
cm′

i=1dGiσ′sσ′demay at steps (τ1,%′ , . . . , τm′,%′) from {R′} and
Csat ∪Ce(T) such that T,Sp, nIO ` D and τi = τi,%′ for i ≤ n and τ ′k = τn+k,%′

for 1 ≤ k ≤ `j0 , C ′ =
cm′

i=1dGiσ′semay, σ′d `i φ′ and the outgoing edges of the
root’s child of D are labeled by H ′σ′d.

(d) for all F δ,µ ∈ Ψ′j0 , if µ(τ̃ ′, σd) is defined then T, µ(τ̃ ′, σd) `i Fσ%′ and either
there exists F ′δ′ ∈ ψ%′ such that F ′σ′sσ′d = Fσ%′ or there exists n + `j0 + 1 ≤
i ≤ m′ such that Giσ′sσ′d = Fσ%′ .

Thanks to Items 1, 2.a and 2.d, we can apply Lemma 44 to obtain that there exists an
annotated query conclusion Ψj0 and a substitution σ% such that:

– Ψj0 = ψj0 ∧
∧`j0
k=1 F

δk,j0
k,j0

 ψk,j0 and for all F δ,µ ∈ Ψj0 , dom(µ) ⊆ {(τ̃ , σ)}
– Fiσ = Fiσ% for i = 1 . . . n

– (`i, T, (τ̃ , σ)) |= Ψj0σ%

– for all F δ,µ ∈ Ψj0 , if µ(τ̃ , σ) is defined then T, µ(τ̃ , σ) `i Fσ% and either there
exists F ′δ′,µ′ ∈ Ψ′j0 such that F ′σ%′ = Fσ% and µ(τ̃ , σ) = µ′(τ̃ ′, σd) or there exists
k ∈ {1, . . . , `j0} such that Fk,j0σsσ%′ = Fσ%.

Since % =
∧n
i=1 Fi ⇒

∨m
j=1(ψj ∧

∧`j
k=1 F

δk,j
k,j ψk,j), we can build an annotated query

conclusion Ψ by extending Ψj0 to ψ. Moreover, specifically, Ψ =
∨m
j=1 Ψ′′j where Ψ′′j0 =

Ψj0 and for all j 6= j0, Ψ′′j = ψj ∧
∧`j
k=1 F

δk,j
k,j ψk,j and for all F δ,µ ∈ Ψ′′j , dom(µ) = ∅.

Note that by construction of Ψ, we deduce that for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)}.
Moreover, since (`i, T, (τ̃ , σ)) |= Ψj0σ% and Ψ is a disjunction with Ψj0 as one of its
disjuncts, we obtain that (`i, T, (τ̃ , σ)) |= Ψσ%.

Finally, let F δ,µ ∈ Ψ such that µ(τ̃ , σ) is defined. By construction of Ψ, we know that
F δ,µ ∈ Ψj0 . Hence, T, µ(τ̃ , σ) `i Fσ% and either (i) there exists F ′δ′,µ′ ∈ Ψ′j0 such that
F ′σ%′ = Fσ% and µ(τ̃ , σ) = µ′(τ̃ ′, σd), or (ii) there exists k ∈ {1, . . . , `j0} such that
Fk,j0σsσ%′ = Fσ% and µ(τ̃ , σ) = τ ′k. In Case (i), since F ′δ′,µ′ ∈ Ψ′j0 , we know from Item
2.d that either there exists F ′′δ′′ ∈ ψ%′ such that F ′′σ′sσ′d = F ′σ%′ = Fσ% or there exists
n+`j0 +1 ≤ i ≤ m′ and so n+1 ≤ i ≤ m′ such that Giσ′sσ′d = F ′σ%′ = Fσ%. In Case (ii),
we know from Item 2.b that Fk,j0σsσd = Gn+kσ

′
sσ
′
d. Moreover, by Item 2.a, we know

that Fk,j0σsσd = Fk,j0σsσ%′ = Fσ%. Hence, we deduce that Fσ% = Gn+kσ
′
sσ
′
d = Giσ

′
sσ
′
d

with n+ 1 ≤ i ≤ m′.
To summarize, we have that an annotated query conclusion Ψ, (R′ = (H ′ ∧ φ′ −→
C ′), σ′s, %s) ∈ Sol%, a derivation D and two substitutions σ%, σ′d such that:

– for all F δ,µ ∈ Ψ, dom(µ) ⊆ {(τ̃ , σ)}
– Ψ = ψ, Fiσ = Fiσ% for i = . . . n and (`i, T, (τ̃ , σ)) |= Ψσ%

– %s is of the form
∧m′

i=1Gi ⇒ ψ%′ with m′ ≥ n and Fiσ = Giσ
′
sσ
′
d for i ≤ n

– D is a derivation of
cm′

i=1dGiσ′sσ′demay at steps (τ1,%′ , . . . , τm′,%′) from {R′} and
Csat∪Ce(T) such that T,Sp, nIO ` D and τi = τi,%′ for i ≤ n, C ′ =

cm′

i=1dGiσ′semay,
σ′d `i φ′ and the outgoing edges of the root’s child of D are labeled by H ′σ′d.

153

– for all F δ,µ ∈ Ψ, if µ(τ̃ , σ) is defined then T, µ(τ̃ , σ) `i Fσ% and either there exists
F ′′δ

′′ ∈ ψ%′ such that F ′′σ′σ′d = Fσ% or there exists n + 1 ≤ i ≤ m′ such that
Giσ

′
sσ
′
d = Fσ%.

This allows us to conclude our proof.

Corollary 10. Consider the preamble Pverif . Assume that for all % = (
∧n
i=1 Fi ⇒ ψ) ∈ Q∪Li,

there exists Sol% such that verify(%,Rq,Sol%) terminates and is true where Rq = (G
′[17→≤]
1 ∧

. . . ∧G′[n7→≤]
n −→

cn
i=1G

′
i) and G′i = dFiemay for i = 1 . . . n.

For all % ∈ Li, (`nIOIO ,`i, tracenIOIO (CI ,−→i)) |= %.

Proof. Direct from Lemma 45 and more specifically Item 2a.

Theorem 6. Let C = E , P,A be an initial configuration and CI be is associated initial instru-
mented configuration. Let L be a sets of lemmas. Let R be a set of restrictions. Let Q be a
set of correspondence queries.

If the following holds:

• for all % ∈ L ∪Q ∪R, names(%) ⊆ E

• for all % ∈ L, (`o, trace(C,−→o))|R |= %

• prove(CI , [L]i, [R]i, [Q]i) terminates and returns true

then for all % ∈ Q, (`o, trace(C,−→o)|R) |= %.

Proof. Consider CI the initial instrumented configuration associated to C. Since for all % ∈ Q∪
L, names(%) ⊆ E , we can apply Lemma 3 meaning that for all % ∈ L, (`i, tracei(CI ,−→i)) |= [%]i
and it suffices to prove that for all % ∈ Q, (`i, tracei(CI ,−→i)) |= [%]i.

Note that by construction, in prove(CI , [L]i, [Q]i), we take nIO such that all queries in
[Q]i are IO-nIO-compliant. Hence, applying Lemma 8, we deduce that for all % ∈ L, (`nIOIO ,`i
, tracenIOIO (CI ,−→i)) |= [%]i. and it suffices to prove that for all % ∈ Q, (`nIOIO ,`i, tracenIOIO (CI ,−→i

)) |= [%]i.
Let us assume [Q]i = {%1, . . . , %k}. Since prove(CI , [L]i, [Q]i) terminates and is true, we

can apply Lemma 45 hence we deduce the existence of the sets of solutions Sol1, . . . ,Solk
satisfying the properties stated in Lemma 45.

Let us focus on one query of [Q]i: Let j ∈ {1, . . . , k}. Consider %j = (
∧n
i=1 Fi ⇒ ψ) and

let T ∈ tracenIOIO (CI ,−→i). Thanks to Lemma 45, we know that there exists an annotated query
conclusion Ψ satisfying Items 1 and 2 of Lemma 45.

In particular, Item 2a gives us that for all tuples of steps τ̃ = (τ1, . . . , τn) and all substi-
tutions σ, if T, τi `nIOIO Fiσ for i = 1 . . . n then there exists a substitution σ% such that Ψ = ψ,
Fiσ = Fiσ% for i = 1 . . . n and (`i, T, (τ̃ , σ)) |= Ψσ%. Hence, to prove (`nIOIO ,`i, tracenIOIO (CI ,−→i

)) |= %j , Item 1 of Definition 10 holds.
Let us now prove the two other items of Definition 10 related to injectivity. To do so, we

prove a slightly stronger property than the second item: (?) for all injk-event(o, ev)δ,µ, injk′-event(o′,
ev′)δ

′,µ′ occurring in Ψ, for all tuples of steps τ̃ = (τ1, . . . , τn), τ̃ ′ = (τ ′1, . . . , τ
′
n), for all

substitutions σ, σ′, if k = k′ and µ(τ̃ , σ) = µ′(τ̃ ′, σ′) then for all j0 ∈ {1, . . . , n}, Fj0 =
injkj0

-event(oj0 , evj0) implies τj0 = τ ′j0 .

154

We prove this property by contradiction. Hence let injk-event(o, ev)δ,µ and injk′-event(o′,
ev′)δ

′,µ′ occurring in Ψ such that k = k′ and µ(τ̃ , σ) = µ′(τ̃ ′, σ′). Assume that there exists
j0 ∈ {1, . . . , n} such that Fj0 = injkj0

-event(oj0 , evj0) and τj0 6= τ ′j0 .
By Item 1 of Lemma 45, we know that for all i ∈ {1, . . . , n}, T, τi `nIOIO Fiσ and T, τ ′i `

nIO
IO

Fiσ
′. By Lemma 2, we deduce from τj0 6= τ ′j0 that oj0σ 6= oj0σ

′. Hence, occn(
∧n
i=1 Fiσ) 6=

occn(
∧n
i=1 Fiσ

′).
Moreover, by Lemma 45, we also know that there exist (R = (H ∧ φ −→ C), σs, %), (R′ =

(H ′ ∧ φ′ −→ C ′), σ′s, %
′) ∈ Solj , two derivations D,D′ and four substitutions σ%, σd, σ′%, σ′d such

that:

• % is of the form
∧m
i=1Gi ⇒ ψ% with m ≥ n and Fiσ = Giσsσd for i ≤ n;

• D is a derivation of
cm
i=1Giσsσd at step (τ1,%, . . . , τm,%) from {R} and Csat∪Ce(T) such

that T,Sp, nIO ` D and τi = τi,% for i ≤ n, C =
cm
i=1Giσs, σd `i φ and the outgoing

edges of the root’s child of D are labeled by Hσd

• T, µ(τ̃ , σ) `i injk-event(o, ev)σ% and there exists injk-event(o1, ev1) ∈ ψ% ∪ {Gi}mi=n+1

such that injk-event(o, ev)σ% = injk-event(o1, ev1)σsσd

and

• %′ is of the form
∧m′

i=1G
′
i ⇒ ψ′% with m′ ≥ n and Fiσ′ = G′iσ

′
sσ
′
d for i ≤ n;

• D′ is a derivation of
cm′

i=1G
′
iσ
′
sσ
′
d at step (τ ′1,%, . . . , τ

′
m′,%) from {R} and Csat ∪ Ce(T)

such that T,Sp, nIO ` D′ and τ ′i = τ ′i,% for i ≤ n, C ′ =
cm′

i=1G
′
iσ
′
s, σ′d `i φ′ and the

outgoing edges of the root’s child of D′ are labeled by H ′σ′d

• T, µ′(τ̃ ′, σ′) `i injk′-event(o′, ev′)σ′% and there exists injk′-event(o′1, ev
′
1) ∈ ψ′%∪{G′i}m

′
i=n+1

such that injk′-event(o′, ev′)σ′% = injk′-event(o′1, ev
′
1)σ′sσ

′
d.

We already proved that occn(
∧n
i=1 Fiσ) 6= occn(

∧n
i=1 Fiσ

′). Hence since Fiσ = Giσsσd
and Fiσ′ = G′iσ

′
sσ
′
d for i ≤ n, we deduce that occn(

∧m
i=1Giσsσd) 6= occn(

∧m′

i=1G
′
iσ
′
sσ
′
d) and so

if we denote o2 = occn(
∧m
i=1Gi) and o′2 = occn(

∧m′

i=1G
′
i), we obtain that o2σsσd 6= o′2σ

′
sσ
′
d.

Since we proved that T, µ′(τ ′1, . . . , τ ′n, σ′) `i injk′-event(o′, ev′)σ′% and T, µ(τ1, . . . , τn, σ) `i
injk-event(o, ev)σ% and we assumed that µ(τ̃ , σ) = µ′(τ̃ ′, σ′), we deduce from Lemma 2
that o′σ′% = oσ%. Furthermore, with injk′-event(o′, ev′)σ′% = injk′-event(o′1, ev

′
1)σ′sσ

′
d and

injk-event(o, ev)σ% = injk-event(o1, ev1)σsσd, we obtain that o1σsσd = o′1σ
′
sσ
′
d.

W.l.o.g., we can assume that the variables between (R, σs, %) and (R′, σ′s, %
′) are disjoint.

Hence, from σd `i φ and σ′d `i φ′, we deduce that σdσ′d `i φ ∧ φ′. Moreover, since o2σsσd 6=
o′2σ
′
sσ
′
d and o1σsσd = o′1σ

′
sσ
′
d, we deduce that σdσ

′
d `i o′1σs = o′1σ

′
s∧o2σs 6= o′2σ

′
s. Furthermore,

Cσdσ
′
d = Cσd and C ′σ′d = C ′σdσ

′
d. Finally, the outgoing edges of the root’s child of D (resp.

D′) are labeled by Hσd (resp. H ′σ′d) and so labeled by Hσdσ′d (resp. H ′σdσ′d).
This allows us to build a derivation D0 of (CfC ′)σdσ′d at step (τ1,%, . . . , τm,%, τ

′
1,%, . . . , τ

′
m′,%)

from {R0} and Csat ∪ Ce(T) such that T,Sp, nIO ` D0 and Rq = (H ∧H ′ ∧ φ ∧ φ′ ∧ o′1σs =
o′1σ
′
s ∧ o2σs 6= o′2σ

′
s −→ C f C ′).

From Corollary 10, we know that for all % ∈ Li, (`nIOIO ,`i, tracenIOIO (CI ,−→i)) |= %. Hence,
we deduce that HypL∪Li,∅(T, ()) holds. Applying Theorem 4, we deduce that there ex-
ists an ordered derivation D′ of (C f C ′)σdσ

′
d at steps (τ1,%, . . . , τm,%, τ

′
1,%, . . . , τ

′
m′,%) from

saturateS
Sp
L∪Li,∅({Rq},Csat) and Csat ∪ Ce(T).

155

This is in contradiction with the fact that verify_inj(Solj , n) terminates and is true
which implies that saturateS

Sp
L∪Li,∅({Rq},Csat) = ∅. This allows us to deduce that for all

j0 ∈ {1, . . . , n}, Fj0 = injkj0
-event(oj0 , evj0) implies τj0 = τ ′j0 .

Notice that the second item of Definition 10 is directly implied by (?). Hence it remains
to prove the last item of Definition 10. Consider injk-event(o, ev)δ,µ and injk′-event(o′, ev′)δ

′,µ′

occurring in Ψ such that k = k′. We first show that for all tuples of steps τ̃ = (τ1, . . . , τn), for
all substitutions σ, if µ(τ̃ , σ) and µ′(τ̃ , σ) are defined then µ(τ̃ , σ) = µ′(τ̃ , σ). Since µ(τ̃ , σ)
and µ′(τ̃ , σ) are defined, we deduce from Item 1 of Lemma 45 that for all i ∈ {1, . . . , n},
T, τi `nIOIO Fiσ. Hence, by Lemma 45, there exist (R = (H ∧ φ −→ C), σs, %) ∈ Solj and two
substitutions σ%, σd such that:

• % is of the form
∧m
i=1Gi ⇒ ψ% with m ≥ n and Fiσ = Giσsσd for i ≤ n;

• there exists injk-event(o1, ev1)δ1 ∈ ψ% ∪ {Gi}mi=n+1 such that T, µ(τ̃ , σ) `i injk-event(o,
ev)σ% and injk-event(o, ev)σ% = injk-event(o1, ev1)σsσd.

• there exists injk′-event(o′1, ev
′
1)δ

′
1 ∈ ψ%∪{Gi}mi=n+1 such that T, µ′(τ̃ , σ) `i injk′-event(o′,

ev′)σ% and injk′-event(o′, ev′)σ% = injk′-event(o′1, ev
′
1)σsσd.

However, since verify_inj(Solj , n) terminates and is true and since k = k′, we know that
(o1σs, ev1σs) = (o′1σs, ev

′
1σs). Hence, injk-event(o1, ev1)σsσd = injk′-event(o′1, ev

′
1)σsσd which

implies injk′-event(o′, ev′)σ% = injk-event(o, ev)σ% and so oσ% = o′σ%. Considering that
T, µ′(τ̃ , σ) `i injk′-event(o′, ev′)σ% and T, µ(τ̃ , σ) `i injk′-event(o, ev)σ%, we can apply Lemma 2
to obtain that µ(τ̃ , σ) = µ′(τ̃ , σ).

W.l.o.g., it remains to consider the cases where µ(τ̃ , σ) is defined and µ′(τ̃ , σ) is not defined.
The idea is build another annotated query conclusion Ψ′ from Ψ by replacing all instances of
F δ,µ in Ψ with F δ,µ′′ such that:

• if F is not an injective event then µ′′ = µ

• if F = injk-event(o, ev) then for all steps τ1, . . . , τn, for all substitutions σ, µ′′(τ̃ , σ) =
µ(τ̃ , σ) when there exists injk′-event(o′, ev′)δ

′′,µ occurring in Ψ where k = k′ and µ(τ̃ , σ)
is defined; µ′′(τ̃ , σ) is not defined otherwise.

Note that Ψ′ is well defined since we proved that for injk-event(o, ev)δ,µ and injk′-event(o′, ev′)δ
′,µ′

occurring in Ψ, k = k′ and µ(τ̃ , σ), µ′(τ̃ , σ) being defined implies µ(τ̃ , σ) = µ′(τ̃ , σ).
The annotated conclusion query Ψ′ satisfies Item 1 of Definition 10 since µ′|dom(µ) = µ and

Ψ satisfies Item 1 of Definition 10. Moreover, thanks to Ψ satisfying the property (?), it is
easy to show that Ψ′ also satisfies it which implies Item 2 of Definition 10. Finally, Ψ′ satisfies
Item 3 of Definition 10 by construction.

156

	Introduction
	Model
	Syntax
	Semantics
	Security properties
	Correspondence and secrecy properties
	Equivalence properties
	Correspondence queries on bitraces

	Axioms, restriction and lemmas

	Instrumented processes
	Transforming temporal queries in atemporal queries
	Restricting the trace search space
	Data constructor function symbols
	Internal communications
	Soundness of our restrictions
	Restrictions on bitraces

	Proving correspondence queries by induction

	Horn clauses generation
	Extending the rewrite rules
	Clauses generated for correspondence queries
	Clauses for the attacker
	Clauses for the protocol
	Soundness

	Clauses generated for equivalence queries and correspondence queries on bitraces
	Clauses for the attacker
	Clauses for the protocol
	Soundness

	Precise actions

	Saturation procedure
	Resolution rule and selection function
	Classic simplification rules
	General redundancy
	Natural numbers
	Applying ProVerif lemmas
	The saturation procedures
	Soundness of the saturation procedures

	The solving procedure
	The conjunction predicate
	Ordered clauses and derivations
	Ordered transformation rules
	The procedure and its soundness

	The verification procedure
	Equivalence queries
	Simple correspondence queries
	Nested queries
	Injective queries
	Correspondence lemmas on bitraces

	Index
	Proof of Lemma 8
	(i,trace(CI,i)) is mapped by (is,trace(CI,i))
	(is,trace(CI,i)) is nIO-mapped by (is,tracenIOIO(CI,i))
	(is,tracenIOIO(CI,i)) is nIO-mapped by (nIOIO,i,tracenIOIO(CI,i))

	Proof of Theorem 1
	Handling data constructor function symbols
	Proving the invariant
	Main proof

	Proof of Theorem 2
	Preamble
	Soundness of simplifySpL,Li({R})
	Soundness of condenseSp(C)
	Main proof

	Proof of Theorem 4
	Soundness of simplifySSpL,Li(C)
	Soundness of condenseSSp(C)
	Main proof

	Proof of th:maintheoremcorrespondence
	Preliminary lemmas
	Main proof

